

ATMOSPHERE AND TEMPERATURE CONTROLLER

Series 9125

OPERATIONS MANUAL

Super Systems Inc.
7205 Edington Drive
Cincinnati, OH 45249
513-772-0060
Fax: 513-772-9466
www.supersystems.com

Super Systems Inc. USA Office
Corporate Headquarters
7205 Edington Drive
Cincinnati, OH 45249
Phone: (513) 772-0060
http://www.supersystems.com

Super Systems México
Sistemas Superiores Integrales S de RL de CV
Calle 3 Int.: 11.
Zona Ind. Benito Juarez
Querétaro, Qro. Méx.
C.P.: 76120

Phone: +52 (442) 2102459
http://www.supersystems.com.mx

Super Systems Europe
Units 3 \& 4, 17 Reddicap Trading Estate,
Sutton Coldfield, West Midlands B75 7BU
UNITED KINGDOM
Phone: +44 (0) 1213292627
http://www.supersystemseurope.com

Super Systems China
No. 335 XianXia Road Room 308
Shanghai, CHINA
200336
Phone: +86 215206 5701/2
http://www.supersystems.com

Table of Contents

INSTALLATION SAFETY REQUIREMENTS -5
CHAPTER 1 - OVERVIEW -8
Mounting -9
Dimensional Drawings 10
Wiring 12
Electrical Installation 12
Pin Out 13
Ancillary Items 13
Setup 14
Additional Features 14
Ethernet Connections 14
Instrument Start-up 15
Flash Card \& Flash Card Reader 15
Default Status Screen 15
Menu 16
Chart 16
Chart Sub Menu 18
LOOPS 19
Ack (Alarm Acknowledge) 19
Data Logging using Flash Card 20
CHAPTER 2 - CONFIGURATION 21
Menu (Configuration) 21
About 23
Maintenance 23
Logs 23
Probe Manager 24
Slave Communications Status 25
Load TC/Auxiliary Analog Input 25
Manual Event Control 25
Shutdown 26
Probe Burnoff Setup 26
PID Loop Setup 27
Trend Chart Edit 32
Communications Setup 33
Slave Instrument Setup 35
Zone Assignments 38
Furnace Setup 39
Alarm Setup 42
Thermocouple Check 43
Relay Assignments 44
Analog Input Setup 45
Analog Output Setup 47
Alarm Polarity 48
Redundant TC Setup 49
Security 49
Curve Entry 51
Alternate PID Setup 51
Aux Analog Input Setup 53
TC Type mV Range Chart 54
Calibration 54
Configuration 56
A/I Module Offset Correction 65
Aux Setpoint Configuration 65
T/C Extension Correction Curves 65
Generic Instrument Setup 66
DF1 Configuration 67
Tuning Assistant 68
PLC Data Mapping 69
Analog Input Correction Curves 70
Instrument Calculation 70
CHAPTER 3 - CONFIGURATOR 2.0 MENUS 73
Burnoff 73
SLAVE Instruments 75
Auxiliary Analog Input 75
Manual Event Control 76
Probe Burnoff Setup 77
PID Loop Setup 79
Port Setup 84
Slave Instrument Setup 87
Zone Assignments 88
Furnace Setup 89
Alarm Setup 92
Thermocouple Check 94
Relay Assignments 95
Relay Setpoints 96
Analog Input Setup 97
Analog Output Setup 99
Passcode and Alarm 100
IP Address 101
Redundant TC Setup 101
Curve Entry 102
Alternate PID Setup 103
SSi Analog Input Setup 103
SSi Configuration and Calibration 105
Overview 105
Equipment needed 105
Notes 105
User Calibration 105
Full Calibration 107
TC Type mV Range Chart 108
Auxiliary Input Offset Correction 109
Aux Setpoint Configuration 110
TC Extension Correction Curves 110
Generic Instrument Setups 111
Configure Generic Instruments 111
Configure IP Addresses 112
Configure Block Writes 112
DF1 Configuration 112
Tuning Assistant 113
PLC Data Mapping 115
Analog Input Correction Curves 115
Series 9125 Operations Manual 3
Instrument Calculation 115
Flash Card Management 118
Slave Instrument Mapping 122
Atmosphere Instruments 122
Temperature Instruments 125
Events Instruments 130
9125 Analog Input Board Jumper Settings 133
WARRANTY 135
APPENDIX A - WIRING DIAGRAM OF SERIES 9125 136
APPENDIX B - FACTORY DEFAULT SETTINGS FOR THE 9125 CONTROLLER 137
APPENDIX C - 9125 INSTRUMENT ALARMS 175
REVISION HISTORY 176

Installation Safety Requirements

Safety Symbols

Various symbols are used on the instrument; they have the following meaning:

Caution, (refer to the accompanying documents)

Functional earth (ground) terminal!

The functional earth connection is required for safety purposes and to ground RFI
 filters.

Personnel

Installation must only be carried out by technically qualified personnel.

Enclosure of live parts

To prevent hands or metal tools from touching parts that may be electrically live (powered), the controller must be installed in an enclosure.

Caution: Live sensors

Do not connect live (powered) sensors to any signal input on the controller. Live sensors are sensors that must be connected to the main's supply. The controller has transient protection circuits connected between the inputs and the earth connection that might be damaged by live (powered) sensors.

Wiring

It is important to connect the controller in accordance with the wiring data given in this handbook. Take particular care not to connect AC supplies to the low voltage power supply input. Use copper wires for 24 V DC power supply to the instrument. Ensure that the wiring of installations complies with all local wiring regulations. For example in the United Kingdom use the latest version of the IEE wiring regulations, (BS7671). In the USA use NEC Class 1 wiring methods.

Power Isolation

The installation must include a power isolating switch or circuit breaker. This device should be in close proximity to the controller, within easy reach of the operator and marked as the disconnecting device for the instrument.

Earth leakage current

Due to RFI Filtering there is an earth leakage current of less than 0.5 mA . This may affect the design of an installation of multiple controllers protected by Residual Current Device, (RCD) or Ground Fault Detector, (GFD) type circuit breakers.

Over current protection

To protect the internal PCB tracking within the controller against excess currents, the AC power supply to the controller and power outputs must be wired through a fuse or circuit breaker specified in the technical specification.

Voltage rating

The maximum continuous voltage applied between any of the following terminals must not exceed 24V DC

- relay or triac output to logic, DC or sensor connections;
- any connection to ground.

The controller should not be wired to VAC. The 24V DC power supply voltage across the connections and between the power supply and ground must not exceed 2.5 kV . Where occasional voltage over 2.5 kV are expected or measured, the power installation to both the instrument supply and load circuits should include a transient limiting device.
These units will typically include gas discharge tubes and metal oxide varistors that limit and control voltage transients on the supply line due to lightning strikes or inductive load switching. Devices are available in a range of energy ratings and should be selected to suit conditions at the installation.

Conductive pollution

Electrically conductive pollution must be excluded from the cabinet in which the controller is mounted. For example, carbon dust is a form of electrically conductive pollution. To secure a suitable atmosphere in conditions of conductive pollution, fit an air filter to the air intake of the cabinet. Where condensation is likely, for example at low temperatures, include a thermostatically controlled heater in the cabinet.

Over-temperature protection

When designing any control system it is essential to consider what will happen if any part of the system should fail In temperature control applications the primary danger is that the heating will remain constantly on. Apart from spoiling the product, this could damage any process machinery being controlled, or even cause a fire. Reasons why the heating might remain constantly on include:

- the temperature sensor becoming detached from the process;
- thermocouple wiring becoming a short circuit;
- the controller failing with its heating output constantly on;
- an external valve or contactor sticking in the heating condition;
- the controller set point set too high.

Where damage or injury is possible, we recommend fitting a separate over temperature protection unit with an independent temperature sensor, which will isolate the heating circuit. Please note that the alarm relays within the controller will not give protection under all failure conditions.

Installation requirements for EMC

To ensure compliance with the European EMC directive certain installation precautions are necessary as follows:

- When using relay or triac outputs it may be necessary to fit a filter suitable for suppressing the emissions. The filter requirements will depend on the type of load. For typical applications we recommend Schaffner FN321 or FN612.

Routing of wires

To minimize the pick-up of electrical noise, the wiring for low voltage dc should be routed away from high-current power cables. Where it is impractical to do this, use shielded cables with the shield grounded at one end.

Chapter 1 - Overview

The 9125 is SSi's versatile atmosphere controller with Ethernet, RS485 Modbus, and DF1 communications to various slave devices such as temperature controllers, flow meters, and PLCs. This instrument can be used to address many thermal processing applications where temperature and carbon control along with event I/O management are necessary. The 9125 has math block capability allowing custom calculations and custom Modbus mapping for communications.

The 9125 also supports multiple user interface screens for more flexibility. Screen sizes include $3.5 ", 5.7$ " and 12.1 ". Functionality added to the screens include "stylus" notes entry, user defined data points and trend charts for paperless chart recording, zoom and pan touch screen control on the charting screen, and remote data retrieval through Ethernet.

Approximate Box Dimensions	$2.75 " \times 4 " \times 4.5 "$
Power Requirements	$24 \mathrm{VDC}, 4$ Watts
Digital Output Rating	$300 \mathrm{VAC} / 1$ AMP
Analog Output Load Rating	1000 Ohms (Total)
Controller Enclosure Rating	IP10 - hand protected
Number of RS232 Ports	Two (2)
Number of Ethernet Ports	One (1)
Number of RS485 Host Ports	One (1)
Number of RS485 Slave Ports	Two (2)
Number of Internal Relays	Eight (8)
Number of Analog Inputs	Three (3)
Number of Analog Outputs	Two (2)
Number of Digital Inputs	Four (4)
Number of Control Loops	Three (3)

The Model 9125 is powered by 24 VDC, not LINE Voltage. Please be careful when connecting power to this controller. Connecting anything other than 24 VDC will cause serious damage.

The variety of input and output combinations allows SSi to configure the Model 9125 to control temperature and atmosphere.

The product is available in three different screen sizes. $3.5^{\prime \prime}, 5.7^{\prime \prime}$ and $12^{\prime \prime}$.

Mounting

The Series 9125 Operator Interface mounts into a panel or on a plate by using the enclosed mounting brackets. A rectangular cutout is required; the size of the cutout is determined by the operator interface size. These units, along with an optional SSi SR3, 6, or 9 analog input board, will mount on a commercially available DIN rail. This can be mounted on the sub-panel on the side of an enclosure for the convenience of the control system.

Dimensional Drawings

\qquad 4.5000" DEEP

Series 9125 Controller Dimensions

24 V DC Power Supply Dimensions

Wiring

Wiring to the Series 9125 operator interface can be done using 232 or 485 to two connectors, comm1 (232) or comm3 (485). The terminal strip on the lower right rear corner of the operator interface is used to connect 24VDC power. The DB-9 port A connection is used to connect the display via 232 to the Series 9125 PID controller. The controller is connected via RS485 communication to the single-loop controllers.

Electrical Installation

The Model 9125 requires $24 \mathrm{VDC}, 4$ Watt, single-phase power. A 24 VDC power supply is required and is generally included as part of the Model 9125 system. This power supply has a universal input that can accept between 60 and 265VAC. Power should be applied in accordance with the electrical drawings that have been supplied. Since each installation is unique to the site, the customer is responsible for providing adequate power and making it available to the Model 9125 power supply.

SSi requirement:

MOV's must be wired across the isolation relay coil terminals on all isolation relays that are connected to solenoids. Further... MOVs must be connected across the HOT and NEUTRAL wires when the solenoid is wired to them. IT IS AN ABSOLUTE MUST to have the MOVs at BOTH LOCATIONS.

Pin Out

SUPER SYSTEMS INC. (800) 666-4330 www.supersystems.com		
1-24VDC (COM)	12 - RELAY OUT 5	22 - SLAVE 2 RS485 (+)
2-24VDC (+)	13 - RELAY OUT 6	23 - SLAVE 2 RS485 (-)
3 - RS485 RT (-)	14 - RELAY OUT 7	24-4-20mA OUT 1 (-)
4 - RS485 RT (+)	15 - RELAY OUT 8 NC	25-4-20mA OUT COM (+)
5 - SLAVE 1 RS485 (-)	16 - RELAY OUT 8 NO	26-4-20mA OUT $2(-)$
6 - SLAVE 1 RS485 (+)	17 - DIGITAL IN 1	27 - ANALOG IN 3 (-)
7 - RELAY COMMON	18 - DIGITAL IN 2	28 - ANALOG IN 3 (+)
8 - RELAY OUT 1	19 - DIGITAL IN 3	29 - ANALOG IN $2(-)$
9 - RELAY OUT 2	20 - DIGITAL IN 4	$30-$ ANALOG IN 2 (+)
10 - RELAY OUT 3	21 - DIGITAL IN COM	31 - ANALOG IN $1(-)$
11 - RELAY OUT 4		32 - ANALOG IN 1 (+)

9125 Pin Out

A wiring diagram of the Series 9125 controller can be found in Appendix B.

Ancillary Items

The following items can be included with the Series 9125: a flash card, a flash card reader, a touch screen, an RS232 cable, an RS485 cable, a 24 V DC DIN rail mount power supply, and a software CD with Configurator, the Configurator manual, TS Manager, and .NET 2.0. The flash card is installed in the operator interface and the flash card reader connects to a Windows ${ }^{\circledR}$ based computer.

The operator interface includes a connection for a mouse and a keyboard. These may be connected to the operator interface via USB, allowing the operators to use a mouse and keyboard instead of the touch screen.

The following table shows the ancillary items and their part numbers.

Part	Part Number
3.5" Operator Interface	31296
5.7" Operator Interface	31297
12" Operator Interface	31299
TS Manager/PC Configurator Software	13339
RS485 comms cable for 12.1" and 5.7 "	20576
RS485 comms cable for 3.5"	20635
Flash Card	31604
Flash Card Reader	13333
RS232 Cable	33027
24V DC Din Rail Mounted Power Supply	31135 or 31137 9125 Controller
13658	

Setup

The Series 9125 setup consists of setting the local time if required. As shipped from the factory the communications ports are set at 19200 baud in Modbus mode.

Time will be set for local time in Cincinnati, Ohio (EST /EDT) or time zone of location of city and state on sales order. For instruction on adjusting these values, please see Chapter 3 Configuration.

Additional Features

The Operator Interface (touch screen) contains a removable compact Flash or SD Card that can be used to transfer data from the Model 9125 to a computer. It is located on the back of the touch screen (see Flash Card \& Flash Card Reader section for more details).

Also included is a Utility Software CD that includes SSi's TS Manager. TS Manager is a utility program that can be loaded onto any Windows $®$ based computer loperating Windows XP or higher). This software will allow the computer to read the data from the TS Flashcard, and allow it to be viewed in a manner that is similar to a strip chart recorder.

Ethernet Connections

The Ethernet connection has three distinct uses. First, should the Operator Interface fail, the Ethernet connection allows a laptop to be connected via a crossover cable to the Series 9125 DIN rail mounted unit using Internet Explorer Browser. This connection can act as a LIMITED FUNCTION "operator interface" until the Operator Interface can be repaired or replaced. The Series 9125 Operations Manual
laptop needs to be operating a Windows XP or higher with Internet Explorer. The default IP address is 192.168.0.200. If you are experiencing problems please call (513) 772-0060 and talk with our computer communications personnel. Secondly, the Ethernet port can be used for communications to a SCADA software package. Call us at (513) 772-0060 if you are interested in this option. The third use for the Ethernet Port is the primary communications connection for the Configurator 2.0 Software.

Instrument Start-up

On power-up, the Operator Interface will display a Microsoft Windows desktop screen for a few seconds and then switch to the default Status screen.

Flash Card \& Flash Card Reader

Never remove the flash card when the Operator Interface is "ON".

To properly shut down the Operator Interface, press the Menu button on the default status screen. Once the menu has been displayed, select the Shutdown option. At the prompt, press Yes to shut down the Operator Interface. See the Chapter 2 - CONFIGURATION section for information on navigating and using the menu system. This will display a conventional Microsoft Windows screen. Sliding the black switch to the OFF position (located directly over the green power connector, on the back of the Operator Interface) or removing the 24 VDC plug will turn off the power to the Operator Interface.

Once the Operator Interface is turned off, remove the compact flash card cover at the top or side of the display unit, exposing the card. Press the black release button or press card in to eject, and the card will pop out of the slot. To replace the flash card, simply return the card to the slot making sure that the release button is in its UP position, and replace the flash card cover to its proper position. To restore power to the unit, move the black switch to the right or ON position or connect plug.

Default Status Screen

The Status Display shows the temperature controller information as well as any auxiliary analog inputs. There are four active buttons on the Status Display: Menu, Chart, Loops, and Ack.

- The Menu button will display the configuration menu.
- The Chart button will display the video recorder screen. Use of the Chart Display is explained below.
- The Loops button will display the main control loop, Temperature, as well as the timer status and any auxiliary analog inputs.

- The Ack (Alarm Acknowledge) button is used to acknowledge an alarm. This button only acknowledges 9125 alarms and does not acknowledge any PLC alarms.

When the quench timer is running, the ACK button is replaced with a quench button. This quench button is used to adjust the quench timer time remaining. In the purple status bar, the quench time remaining is displayed.

Menu

There are three levels of menus in the Series 9125.

- The first level is the operator level. These are functions or operations that are typically handled by the furnace operator. This menu is accessed without the need for a pass code.
- The second level is the supervisor level. This level requires the entry of a level 1 or a level 2-pass code.
- The third level is the administrator level. This requires the level 2-pass code ONLY.

As shipped, the supervisor and administrator
 level codes are set as 1 and 2 respectively. The pass codes can be changed at the Passcode and Alarm Screen. Note: Any level can access a lower level screen. For instance, the Administrator level passcode can access all of the Supervisor and Operator level screens.

The menu items are explained in detail in Chapter 2 - Configuration.

Chart

The Chart Display shows between 1 hour and 24 hours of process variable data on the screen and can be scrolled back to view all of the data stored on the hard drive. The vertical timelines change as the time changes on the screen. Any trend charts that have been created through the Configuration menu are accessible here. See the Chapter 2 - CONFIGURATION section for more information on creating trend charts.

The function buttons run along the bottom of the screen.

The folder button

The Trend Lines button -

- will allow the user to select or de-select the trend lines on the trend chart to display. If the checkbox next to each trend line is checked, then that trend line will be displayed.

The Datagrid View button \square - will display a screen with the trend data in a grid format instead of with trend lines. The trend data is shown in 1-minute intervals. Clicking on the OK button on this screen will close the screen down and return to the Chart Display screen.
a)

The Refresh button --- will refresh the screen's trend data if the screen is not in real-time mode.

The left-pointing green arrow button - \square - will move the chart's view backward in time by the specified chart interval. options are: 1 Hour, 2 Hours, 4 Hours, 8 Hours, 12 Hours, or 24 Hours.

The right-pointing green arrow button - \square - will move the chart's view forward in time by the specified chart interval.
\square - will put the chart into real-time mode if it is not in real-time mode, or take the chart out of real-time mode if it is. When in real-time mode, the chart will automatically be updated once a minute.

Chart Sub Menu

There is a sub-menu available by putting a finger or a stylus anywhere on the chart and holding it there for a couple of seconds. The sub-menu will have the following options available: Zoom, Restore, Add Note, Data, and Exit.

The Zoom option will allow the user to zoom in on a particular part of the screen. Once this has been selected, the user can take a stylus or a finger and create a box around the desired data. Once the user releases the stylus or finger, a zoom is no longer possible, and the user will need to re-select the option from the sub-menu to zoom in again.
The Restore option will back out of any zoom options that have been performed and display the chart screen as it initially was.

The Add Note option allows the operator to enter a note on the chart, similar to writing on a paper chart. The note shows up when the chart is printed out using the utility software included with the Series 9125 instrumentation. Pressing the Add Note option displays a screen where the operator can enter the operator ID or initials and a note. The user has the option to enter a note using the operator interface keyboard, where he or she will be able to type in the note; or the user can use the Signature mode, which will allow them to write a note using a stylus.
The Data option will show the trend data as a data grid instead of the trend lines on a chart. This
\square - from the chart function
screen.
Exit will close out the sub-menu without selecting an item.
Pressing the red ' X ' in the top right-hand corner of the screen will take the user back to the status screen.

Loops

This screen will display the loops for the 9125. Up to three loops can be displayed. The current process variable is displayed at the top, with each loop set point displayed beneath the process variable. The operator can change the process set point by touching the screen area below the large process variable numbers. When pressing the Temperature set point, a numeric keypad is displayed, showing the current value and allowing the operator to enter a new set point by simply pressing on the appropriate numeric keys. Once the correct set point has been entered, press the OK key to make the change. When the OK
 key is pressed the display returns to the Loops Screen. Another active key within the Loops Screen is the Auto/Man (Auto/Manual) button. Pressing that button toggles the controller's mode between Auto and Manual. In the manual mode, pressing the percent output button on the Loops Screen (next to the Auto/Man button) displays a numeric keypad, allowing a \% output to control the "loop" in a manual mode to be entered. If a timer is running, the status will be displayed at the top right of the screen. Any load T/Cs that are actively communicating will be listed in the box to the right of the setpoint/percent output values. If an alarm condition is present, the alarm text will be displayed below the loop information. If the alarm needs acknowledging, then the Alarm Ack button will be displayed in the bottom left corner.

The Loops Screen also allows you to move back to the default Status Screen by pressing Return.

Ack (Alarm Acknowledge)

The Ack (Alarm Acknowledge) button will allow the user to acknowledge any alarms that have been configured.

Data Logging using Flash Card

NOTE: See Warnings with respect to removing the Flash Card.

The Advantech TPC-642S/642-SE touch screen Operator Interface utilizing a Compact Flash
Card allows the unit to data log the parameters set up by a qualified SSi technician. Should a customer not take the data offline in a timely manner, the data will be over-written, the oldest data being over-written first. Here is how it works:

1. When the Operator Interface detects that there is less than 5% disk space left on the compact flash card, an alarm will be displayed on the main interface screen stating " $x \%$ disk space remaining loverwrite at $3 \%)^{\prime \prime}$. In the upper right corner, an ALM is indicated, but because it is not a communications alarm or a 9125 device alarm, the background remains green. This alarm will remain active until more than 5% of disk space is available for writing data log files.
2. If the user does not copy the log data from the disk, it will eventually fall to 2% disk space. At this point, the touch screen will select the oldest compressed file and delete it. It then checks to see if 3% remains. It repeats this procedure until 3% disk space remains. At this point the alarm message changes to "Overwriting data log data!" Because this allows the system to seesaw between 2% and 3%, it will continue to display "Overwriting data log data!" until somebody offloads the files.

Technical concerns and details:

1. If there are not enough compressed files to bring the free space up to 3%, the system will hunt down and kill hourly files. This should only happen if compression would not be running for some reason.
2. If all compressed files and hourly files have been removed and there is still not enough disk space (perhaps a problem with the compact flash card), the data logger will not write to the disk until the condition is remedied. (Alarms continue to display).
3. The data log data alarm is the lowest priority. The alarm priorities are touch screen communications, then 9125 controller, then disk space.

See the Flash Card Management Section for more information.

Chapter 2 - CONFIGURATION

Menu (Configuration)

The Configuration Menu is entered through the Menu key that is part of the four buttons running along the bottom of the Default Display Screen. Pressing the Login key at the bottom of the screen will allow the user to enter a login user and password. Note - users can be set up through the Security menu option in this menu. User names and passwords are case sensitive. There are three levels of security for the menu system: Operator, Supervisor, and
Administrator. Pressing the Login button will allow the user to enter a user name and password to log in. When the menu screen is first displayed, the operator-level menu options are visible.
The list of the operator-level menu options is:

14/10/2014 15:15:31

About

Maintenance

Logs

Probe Manager
Slave Communications Status
Load TC/Auxiliary Analog Input
Manual Event Control
Shutdown

Login Detail
Return

- About
- Maintenance
- Logs
- Probe Manager
- Slave Communications Status
- Load TC/Auxiliary Analog Input
- Manual Event Control
- Shutdown

The list of supervisor-level menu options is:

- About
- Maintenance
- Logs
- Probe Manager
- Slave Communications Status
- Load TC/Auxiliary Analog Input
- Manual Event Control
- Shutdown
- Probe Burnoff Setup
- PID Loop Setup
- Trend Chart Edit

The list of administrator-level menu options is:

- About
- Maintenance
- Logs
- Probe Manager
- Slave Communications Status
- Load TC/Auxiliary Analog Input
- Manual Event Control
- Shutdown
- Probe Burnoff Setup
- PID Loop Setup
- Trend Chart Edit
- Communications Setup
- Slave Instrument Setup
- Zone Assignments
- Furnace Setup
- Alarm Setup
- Thermocouple Check
- Relay Assignments
- Analog Input Setup
- Analog Output Setup
- Alarm Polarity
- Redundant TC Setup
- Security
- Curve Entry
- Alternate PID Setup
- Aux Analog Input Setup
- Calibration
- Configuration
- A/I Module Offset Correction
- Aux Setpoint Configuration
- T/C Extension Correction Curves
- Generic Instrument Setup
- DF1 Configuration
- Tuning Assistant
- PLC Data Matching
- Analog Input Correction Curves
- Instrument Calculation

To select any of the menu options, highlight that item by clicking on it, and click on the Detail button. The Return button will return the user to the default display screen.

The About screen displays important information on the 9125 controller that the touch screen is communicating with. The SSi 9125 field shows the firmware version of the controller itself. Serial Number shows the serial number of the controller. Interface Revision shows the current version of the touch screen interface.

The remaining fields show versions of various DLL (dynamic link library) files that the touch screen software uses to operate. These fields may be needed for troubleshooting if you need to contact SSi for technical support.

Maintenance

From the Maintenance Status menu, you can view a list of scheduled and completed maintenance items. Maintenance items are added from the Configuration -> Maintenance menu. See the Configuration section on page 56 for more information.

Logs

Log Types

The System Log tracks the startup and shutdown activity of the touch screen as well as when communications to the controller are established.

The Alarm Log tracks all alarms-those that are internal to the controller and those that are generated by the PLC. This log tracks the alarm generated, its start time, and its end time. This log can be useful for helping build an alarm history.

Probe Manager

This option allows the user to register a probe within the 9125 by entering its serial number. Doing so starts a tracking history of probe burn-offs, impedance tests, recovery time, and other probe parameters. Trends can be monitored this way, and the impedance of the probe can be traced to help estimate its life expectancy.

To install a new probe, tap Install New Probe. You will be asked for the probe serial number. Enter it and tap OK.

When Burnoff Report is selected, a list showing when a burnoff took place will appear, along with probe mV , temperature, and temperature change during the burnoff. When a burnoff event is selected, a chart will show temperature changes during the burnoff event.

When Probe Test Report is selected, a list will appear showing test parameters for the selected probe: time: Impedance $\mathrm{k} \Omega$, Recovery Time, Start Temperature, Test mV , and Test Temperature. When a test event is selected, a chart will show temperature changes during the test.

Tap Return to return to the main menu.

Slave Communications Status

This page is a display of the current process variables of each of the slave instruments communicating with the 9125 controller. These values are display-only, and cannot be modified from this screen.
There are five possible messages that can occur to describe the instrument communications status.

- N/A - No instrument is connected
- Bad - No communications exist
- ??? - Communications exist, but there are frequent errors
- ?OK - Communications exist, but there are occasional errors

- OK - Communication is established and working properly

For set-up of the auxiliary instruments go to the menu item "Slave Instrument Setup"
The Return button will return the user to the menu screen.

Load TC/Auxiliary Analog Input

The Load TC/Auxiliary Analog Input screen will show the values for the load TCs and the auxiliary analog inputs. These values are display-only, and cannot be modified from this screen.

Manual Event Control

Events are assignable outputs. Typically, they are used to turn process gases off and on and tell the equipment to do a variety of tasks. The Manual Event Control submenu allows the user to force the events off or on.

The Manual Event Control menu option shows the user all of the events ($0-47$) and their current status. It also allows the user to manually control the status of any event by clicking on the value. To change the status, highlight the specific event and click on the Edit button. The user will be able to select either an On value or an Off value.

WARNING!

Before assigning or changing events, be certain that you are familiar with the function of the event whose status you are going to change. Changing the status of an event without knowledge of the result can lead to hazardous situations.

Clicking on the OK button will set the value, while clicking on the Cancel button will cancel the action. The Return button will return the user to the menu screen.

Shutdown

The Shutdown selection will display a screen asking whether or not to shut down the interface of the Series 9125. When the operator interface is shutdown, the Series 9125 controller is still functioning. IT can be monitored by connecting the Ethernet connection to a laptop computer, using Internet Explorer, and assigning a legitimate IP address. Choosing Yes displays a typical computer desktop screen with the Start button in the bottom left-hand corner. The power to the operator interface can now be turned off without upsetting any of the settings. Choosing No displays the initial Status Screen. Note - Shutting down the Operator Interface does not shutdown the Series 9125 Controller.

Probe Burnoff Setup

When a probe is in a furnace, soot will collect in the end of the probe, which will have a negative effect on the performance of the probe. Burnoffs are used to clean out the built-up carbon by burning it off of the probe.

Burnoff Time: This is the duration of the burnoff measured in seconds. SSi recommends a 90 second burnoff, and this will be the default value. However, it can be adjusted by the operator. Click on the OK button to set the new value, or click on the Cancel button to cancel.

Rec Wait Time: The amount of time allotted to
 allow the probe measurements to return to a stable, accurate range after the burnoff is complete. This is measured in seconds. The control output is held until this time is elapsed. Clicking on the value will allow the user to change the value.

Interval: This is the amount of time between the beginning of one burnoff and the beginning of the next scheduled burnoff, in minutes. Default time for the instrument is 720 minutes (12 hours). However, the amount of time between burnoffs should be determined by the application.

Minimum Millivolts: The minimum measured millivolt tolerance of the probe required to start a burnoff. Clicking on the value will allow the user to change the value. SSi recommends the millivolt value gets down to 200 mV .

Maximum Temperature: The maximum measured temperature allowed during a burnoff. If the temperature value is exceeded the burnoff will stop. This is done to help maintain the life and the accuracy of your probe. SSi recommends a value of 1800 degrees. Clicking on the value will allow the user to change the value.

Digital IN 4 Assignment: The value for the digital input 4 assignment. Clicking on the value will allow the user to change the value, which can be either event or Start Burnoff.

Burnoff Minimum Millivolts Alarm Setpoint: The minimum millivolt value that must be reached in order for the "Insufficient mV drop during BO" alarm not to be generated. If the millivolt value does not drop below the minimum, the alarm will be generated.

Burnoff Maximum Temperature Rise Limit: The maximum number of degrees that the temperature is allowed to increase before the "Excessive TC rise during BO" alarm is generated.

PID Loop Setup

PID is the tuning parameters entered for each Process Variable loop.

Prop Band (0 for On/Off)

Proportional Band determines the response to the current error. The Proportional Band is the percent of the range of the process variable that will produce 100% output and is the inverse of the proportional gain. A low Proportional Band value results in a larger change in output for a given error. Conversely, a high Proportional Band value results in a smaller change in output for a given error. If the Proportional Band is too
 small, control may oscillate or be otherwise unstable. If the Proportional Band is too large the control action may be too sluggish in response to changes within the system. Note: If the Proportional Band is set to 0.0 , only on/off control is performed. The range 0 3276.0.

Reset

Reset determines the influence of past errors. The Reset, or integral action lexpressed in repeats per minute), sums the error between the process variable and setpoint over time and adds this accumulated output to the proportional output. A "proportional only" controller generally operates with steady-state error because some error is required to produce control output. The goal of integral action is to drive the steady-state error to zero and eliminate this droop. The range 0-327.67.

Rate

Rate adjusts the response to future errors. The Rate, or derivative action (expressed in minutes), is used to predict system behavior and has a dampening effect. The more the controller tries to change the process variable the harder the derivative will work to counter that effort. This dampening effect can be valuable in reducing overshoot but is most often useful when trying to improve control on systems with significant and predicable lag. The range $0-327.67$. NOTE: The rate is not typically used for carbon control.

Control Mode

This is the mode of the loop. The values are: Dual Reverse, Single Reverse, Dual Direct, or Single Direct. Dual - This has two output relays which can increase and decrease to achieve the SP.
Single - This has one relay which works in only one direction to achieve the SP.
Direct - If the PV - SP equals a positive number and the output would bring the PV down toward setpoint that is direct.
Reverse - If the PV - SP equals a negative number and the output would bring the PV up toward setpoint then that is reverse

Example: If a 12 mA output drives a 0 degree F temperature (PV) UP to a 1200 degree F temperature (SP), this would be REVERSE, and since this would take a SINGLE output from the controller, the Mode for the Temperature Loop is Single Reverse.

Integral Preset

This field provides an offset for the starting point for PID control, also referred to as "Load Line" or "Manual Reset". The range is $\mathbf{- 1 0 0}$ to 100 .

Cycle Time

This field is typically set to the valve travel time multiplied by 1.5 . The range is $0-500$.

Setpoint Change Limit

This is a smart time feature that allows Process Loop to use PB only without Reset until the Process Variable drops below the percent output set under this category. It is used to eliminate overshoot. The Output percentage selected under this category must be above the normal operating output percentage of the furnace at heat.
The options are: OFF, $80 \%, 70 \%, 60 \%, 50 \%, 40 \%, 30 \%$, or 20%.
Example: If the furnace runs at 40% output at heat for the maximum load, the setpoint change limit should be set to 60%.

Control Low Limit

This is the low limit for the loop. The range is $\mathbf{- 1 0 0}$ to 100.

Control High Limit

This is the high limit for the loop. The range is $\mathbf{- 1 0 0}$ to 100 .

0 Setpoint Stops Control

If the Setpoint is zero, then all outputs are turned off. The option is either Yes or No.

IN1 high limit shuts down ctrl

If input 1's high limit is reached, then all outputs are turned off. The value can either be Yes or No.

IN2 high limit shuts down ctrl

If input 2's high limit is reached, then all outputs are turned off. The value can either be Yes or No.

IN3 high limit shuts down ctrl

If input 3's high limit is reached, then all outputs are turned off. The value can either be Yes or No.

PID Auto Switch

This is the PID auto switch field. The value can either be Yes or No.
PID auto switch is a feature within the instrument that allows multiple PID Loops to be used for various temperature ranges. This feature can be extremely helpful when a single PID Loop is not accurate across a wide temperature range. The most common indication that PID auto switching may improve furnace ability is failure to pass Temperature Uniformity Surveys (TUS). In many examples, a certain PID Loop may prevent under- or over-shoot at normal operating temperatures; but produce unacceptable overshoot at lower temperature.

This feature allows the user to utilize (up to) three distinct loops to obtain more accurate heating curves. In most applications, it is helpful to use the built-in Tuning Assistant feature to determine appropriate PID
values. These values can be recorded and manually entered as described below. The chart below demonstrates this feature.

In the example above, proper use of the Tuning Assistant allows the user to find the following optimal PID settings for the following temperature ranges:

- $0-800 \mathrm{~F} \rightarrow$ PID Group $1(\mathrm{P}=1.0, \mathrm{I}=2.0, \mathrm{D}=3.0)$
- 801-1500F -> PID Group 2 ($\mathrm{P}=1.3, \mathrm{I}=2.3, \mathrm{D}=2.3$)
- $1501 \mathrm{~F}+->$ PID Group $3(\mathrm{P}=1.6, \mathrm{I}=2.6, \mathrm{D}=3.6)$

The following settings must be made via the touch screen:

Parameter	Value
PID Loop Setup -> Loop 1 -> PID Auto Switch	Yes
PID Loop Setup -> Loop 1 -> Switch Point PID 1-2	800
PID Loop Setup -> Loop 1 -> Switch Point PID 2-3	1500
Alternate PID Setup -> LP1 set 1 -> Prop Band	1.0
Alternate PID Setup -> LP1 set 1 -> Reset	2.0
Alternate PID Setup -> LP1 set 1 -> Rate	3.0
Alternate PID Setup -> LP1 set 2 -> Prop Band	1.3
Alternate PID Setup -> LP1 set 2 -> Reset	2.3
Alternate PID Setup -> LP1 set 2 -> Rate	3.3
Alternate PID Setup -> LP1 set 3 -> Prop Band	1.6
Alternate PID Setup -> LP1 set 3 -> Reset	2.6
Alternate PID Setup -> LP1 set 3 -> Rate	3.6

PID 1 -> 2 Switch Point

This is the PID Switch Point field. This is used in conjunction with the PID Auto Switching feature. See the PID Auto Switch section for more information. The range is $\mathbf{- 3 0 0}$ to 4000 .

PID 2 -> 3 Switch Point
This is the PID Switch Point field. This is used in conjunction with the PID Auto Switching feature. See the PID Auto Switch section for more information. The range is $\mathbf{- 3 0 0}$ to 4000 .

Setpoint Lower Limit

This is the lower limit of the setpoint. The range is $\mathbf{- 3 0 0}$ to 9999 .

Setpoint Upper Limit

This is the upper limit for the setpoint. The range is $\mathbf{- 3 0 0}$ to 9999.

Cascade SP Lower Limit

This is the cascade setpoint low limit. The 9125 uses the difference between the cascade SP lower limit and the cascade SP upper limit and multiplies that value by the \% output of the load loop. It then offsets this value by the cascade SP lower limit and feeds the furnace loop this value as a setpoint.

Cascade SP Upper Limit

This is the cascade setpoint upper limit. The 9125 uses the difference between the cascade SP lower limit and the cascade SP upper limit and multiplies that value by the \% output of the load loop. It then offsets this value by the cascade SP lower limit and feeds the furnace loop this value as a setpoint.

Example:
Cascade SP Lower Limit: 0
Cascade SP Upper Limit: 2000
The load has a setpoint of 1700 and it is at 37% output. The furnace setpoint will be calculated as follows: $(2000-0) * 0.37+0=740$.

PV Source

The options for PV Source are either Internal or External. If External is selected, the loop's PV must be written by an external source (an example would be a 7EK controller, PLC, etc.). Selecting Internal will continue normal operation where the source is determined by the PID loop and the PV type.

Minimum Forward On Time (sec)

This setting specifies the minimum number of seconds for which output must be positive (heating) before the control is turned off. The maximum value for this setting is 100 .

Minimum Forward Off Time (sec)

This setting specifies the minimum number of seconds for which the control must be off after heat is applied. The maximum value for this setting is 100 .

Minimum Reverse On Time (sec)

This setting specifies the minimum number of seconds for which output must be negative (cooling) before the control is turned off. The maximum value for this setting is 100 .

Minimum Reverse Off Time (sec)

This setting specifies the minimum number of seconds for which the control must be off after cooling is applied. The maximum value for this setting is 100 .

Positive Output Accumulator

The Positive Output Accumulator is the sum of the positive outputs lgiven in percentages up to one decimal place) measured each second. Therefore, if the following outputs are recorded over five seconds:

Output (in \%)	Second Passed
100.0	1
99.0	2
99.0	3
98.0	4
97.0	5

Then the value for the Positive Output Accumulator after five seconds will be $1100.0+99.0+99.0+98.0+$ 97.0) or 493.0.

To reset the Positive Output Accumulator, simply click Edit while the Positive Output Accumulator is highlighted and confirm the reset. This will cause the Positive Output Accumulator to be reset to zero and start accumulating values again from that point.

Negative Output Accumulator

The Negative Output Accumulator is the sum of the negative outputs (given in percentages up to one decimal place) measured each second. The sum of the negative values is expressed as a positive value. This means that, if an output of -50% is recorded after one second, a value of 50 will be added to the Negative Output Accumulator. Similarly, if the following outputs are recorded over five seconds:

Output (in \%)	Seconds Passed
-20.0	1
-20.0	2
-21.0	3
-21.0	4
-22.0	5

Then the value for the Negative Output Accumulator after five seconds will be $120.0+20.0+21.0+21.0+$ 22.0) or 104.

To reset the Negative Output Accumulator, simply click Edit while the Negative Output Accumulator is highlighted and confirm the reset. This will cause the Negative Output Accumulator to be reset to zero and start accumulating values again from that point.

Overshoot Control Logic

Overshoot control logic is activated when a large setpoint change occurs. If the logic is active and a large setpoint occurs, it sets a working setpoint at an appropriate distance from the desired setpoint to prevent the PV from overshooting the desired final setpoint. When the PV reaches or crosses this working setpoint, then the logic exponentially ramps the working setpoint to the desired final setpoint.

Output rate change

This option causes the 9125 controller to limit the rate at which the output changes in the furnace. For example, if the output rate change limit is 5% per second, the controller will increase the output at a rate no greater than 5% each second until the output reaches the level needed to reach setpoint. This limit can be useful in cases where (for example) a heating element should not (for operational and safety reasons) heat up to a high output immediately. If the output needs to reach 100% to achieve setpoint, the Output Rate Change Limit will apply the output incrementally, rather than allowing the output to climb to 100% as soon as the heat is turned on.

PID Switch Variable

This is the parameter that triggers the PID switch. The options are Process variable and Setpoint. Note that PID Auto Switch must be set to Yes in order to use PID Switching.

Trend Chart Edit

This menu option will allow the user to add, modify, or delete trend lines in a trend chart file, as well as the trend chart files themselves. The trend lines are the number of variables displayed on one screen. For example this could be a control, overtemp, or load thermocouple on a batch furnace. Or it could be one thermocouple from eight temper furnaces. There is not a maximum for template selections, but the number of variables displayed on one screen must be a consideration in this process. The buttons across the top of the screen - Open, New, Delete, Save, and Save As - deal with the trend chart files themselves, not the individual trend lines.

Open will allow the user to select a trend chart file to open up to edit.
New will create a new trend chart file to begin adding trend lines to.
Delete will delete a specified trend chart file.
Save will save all changes to the current trend chart file that have been made.
Save As will allow the user to save the current trend chart file as a new file with a different name.
Once a new trench chart file has been created, or one has been opened, trend lines can be added, modified, or deleted. Add will add a new trend line to the file. Edit will allow the user to edit the information for a specific trend line. Delete Line will delete the specified line from the chart file.
Adding or editing a trend line will involve the following parameters:
Name - the name of the input, for example "Temp ACT" which would be the actual temperature of the input. It is a good idea to shorten the names so that they still make sense, but do not take up as much space.
Data - This will determine where the data is coming from. The user can click on the box to select from the list of data logged points in the 9125. Some of the points have a name, such as "Temperature" or "Temperature SP", but others will just show the register in the 9125 that has been logged. Note that certain parameters are already setup and logged. For anything needed beyond this, you will need to contact SSi at (513) 772-0060 to get the register information. This register will need to be added to
 the Datalogging Setup in the Configuration menu.

Min - the minimum displayed scale value on a chart.
Max - the maximum displayed scale value on a chart.
Expression - every input requires an expression to be calculated and displayed correctly. This is because the registers in the 9125 hold only integer values, so any value that requires a decimal point needs to be set up properly for the display. For example an expression for temperature would be $\times(1750=1750)$. For a value such as carbon or millivolts, the expression would be x * $0.01(150=1.50)$ or $x * 0.1$ ($805=80.5$).
Format - the value displayed on the chart display of the operator interface. A short custom description can be added here. For example, to display one (1) decimal point, enter a value of "\#0.0". For carbon values, enter a value of " $\# 0.00$ " for 2 decimals. This would display a value like " 0.81 ". Entering "\#.00" would display a value of ". 81 ". \#0 or 0 will display integer values.

Color - The box next to the format box will allow the user to apply a color to the trend line to differentiate it from other trend lines on the chart.
Units - The type of units used for the trend.
Line Width - a numeric value for the thickness of the trend line. A 1 is a thin line; A higher value = thicker line width.
Sample - a number is entered here to test the expression and verify that formatting is correct.
Test - Press the test button to calculate the expression with the value entered in the sample parameter. For example with an expression of $x^{*} .1$ and a value of 250 entered in the sample parameter will display a 25.0.

The Set button will save the values entered. The Cancel button will cancel the information and make no changes.

The OK button will close the screen and prompt the user to save any changes if changes have been made.
The Cancel button will close the screen and return to the menu screen.

Communications Setup

Communications Setup		
IP Address	192.168.1.229	\triangle
Subnet Mask	255.254 .255 .0	
Gateway	192.168.1.1	
RS-232B Baud	19200	
RS-232B Mode	Modbus/DF1 master	
Host 485 Baud	19200	
Host 485 Mode	Modbus	
Host 485 Address	1	
Slave 1 Baud	19200	\checkmark
Edit	Return	

Warning: Changes to this screen should not be made without consulting SSi at 513-772-0060. This screen will show the Ethernet and RS-232/RS-485 communications information for the 9125 controller.

IP Address

This will identify the IP address of the controller. Please consult your Systems Administrator before changing this value as it can affect communications to the 9125 controller, communications between the controller and the PLC, communications between the controller and other devices on the network, or to data collection systems. This is necessary if the Touchscreen will be communicating to the 9125 over Ethernet communications. The IP address must be in the "xxx.xxx.xxx.xxx" format. NOTE: The IP address is not typically used for communications from the touch screen to the controller, but for communications between the controller to SuperDATA modules, PLCs, etc.

IP Mask

This will identify the Subnet mask of the controller. The Subnet mask must be in the "xxx.xxx.xxx.xxx" format.

IP Gateway

This will identify the IP gateway of the controller. The IP gateway must be in the "xxx.xxx.xxx.xxx" format.

RS-232B Baud

This will set the baud rate for RS-232 communications. This is necessary if the Touchscreen will be communicating through the Com ports. The list of options is:

1200	14400	57600	460800
2400	19200	76800	921600
4800	28800	115200	
9600	38400	230400	

RS-232B Mode

This will set the mode for RS-232 communications. This is necessary if the Touchscreen will be communicating through the Com ports. The list of options is:

Modbus/no PLC
 Modbus master/PLC

Host $485(3,4)$ Baud
This will set the baud rate for RS-485 communications. This is necessary if the Touchscreen will be communicating through the Com ports. The list of options is:

1200	14400	57600	460800
2400	19200	76800	921600
4800	28800	115200	
9600	38400	230400	

Host 485 (3,4) Mode

This will set the mode for RS-485 communications. This is necessary if the Touchscreen will be communicating through the Com ports. This setting is fixed at Modbus.

Host 485 Address

This will set the address for RS-485 communications. This is necessary if the Touchscreen will be communicating through the Com ports. The range is $1 \mathbf{- 2 4 7}$.

Slave $1485(5,6)$ Baud
This will set the baud rate for Slave 1 communications. The list of options is:

1200	14400	57600	460800
2400	19200	76800	921600
4800	28800	115200	
9600	38400	230400	

Slave $1485(5,6)$ Mode
This will set the mode for Slave 1 communications. This list of options is:
Modbus
Yokogawa
Modbus Host
Slave $2485(22,23)$ Baud
This will set the baud rate for Slave 2 communications. The list of options is:

1200	14400	57600	460800
2400	19200	76800	921600
4800	28800	115200	
9600	38400	230400	

Slave 2485 (22,23) Mode
This will set the mode for Slave 2 communications. This list of options is:
Modbus
SSi Analog Input Board
Yokogawa
PLC Type
The list of options is:
Micrologix Modbus
MCMmodule Modbus
DF1 PLC5
DF1 Slik
Passive
Series 9125 Operations Manual

Host 232A Baud

This will set the baud rate for RS-232 communications. This is necessary if the Touchscreen will be communicating through the Com ports. The list of options is:

1200	14400	57600	460800
2400	19200	76800	921600
4800	28800	115200	
9600	38400	230400	

Host 232A Mode

This will set the mode rate for RS-232 communications. This is necessary if the Touchscreen will be communicating through the Com ports. This setting is fixed at Modbus.

The Return button will return the user to the menu screen.

Slave Instrument Setup

WARNING: This screen should not be changed without consulting SSi at 513-772-0060.

This screen will allow the user to configure up to eighteen (18) slave instruments through the 9125 controller (7 are reserved). To set up a slave instrument, highlight the instrument number and click on the Edit button.

The list of available slave instruments will be shown on the screen. The list is color coded by type - Blue for Atmosphere, Red for Temperature,
 Yellow for Events, and White for User-Selected Instrument. Highlight an instrument to select it as the instrument to use.

The list of controllers includes the following Atmosphere Controllers:

- SSi AC20
- Yokogawa 750
- Honeywell UDC3300
- Dualpro LP1 Modbus
- Dualpro LP2 Modbus
- Dualpro LP1 MMI
- Dualpro LP2 MMI
- Eurotherm 2402
- Eurotherm 2500
- Carbpro v3.5
- Carbpro v3.0
- CarbPC
- 9200 LP1
- IR Base
- MGA

This list of controllers includes the following Temperature Controllers:

- SSi 7EK
- Yokogawa 750
- Honeywell UDC3300
- Dualpro LP1 Modbus
- Dualpro LP2 Modbus
- Dualpro LP1 MMI
- Dualpro LP2 MMI
- Eurotherm 2402
- Eurotherm 2500
- Unipro v3.5
- Unipro v3.0
- Carbpro v3.5 Slave
- Carbpro v3.0 Slave
- 10Pro
- DualPro IN C
- 9200 LP1
- 9200 LP2
- 9200 LP3
- 9100 LP2
- Eurotherm 2704 LP1
- Eurotherm 2704 LP2
- Eurotherm 2704 LP3
- VC BASE 1
- VC BASE 2
- VC BASE 3
- VC BASE 4
- AIPC
- SSi 7SL
- AEC FurnaceMeter
- UMC800 LP1
- SSi Quad A01
- SSi Quad AO2
- SSi Quad A03
- SSi Quad A04
- Yokogawa UT350
- Yokogawa 750 Lp 2
- Yokogawa UP350
- Honeywell DCP551
- Ascon 08
- SSi X5
- SSi M4L
- SSi X5/timer
- SSi SPUD
- SSi AIB3
- SSi H ${ }_{2}$ cell
- Flow Meter Short
- $\quad \mathrm{SSiO} \mathrm{O}_{2}$ remote
- SSi Dual Motor Board
- SSi Smart AIB3
- O_{2} Block
- Waukee Valvetronic +

This list of controllers includes the following Event Controllers:

- SSi AC E
- Yokogawa 750E
- Mod Mux
- Dualpro E Modbus
- Dualpro E MMI
- Carbpro Ev3.5
- Carbpro Ev3.0
- Eurotherm 2500
- SSi 8-8
- SSi 9200E
- Micrologix PLC
- MCM Module
- PLC5 DF1
- SLC DF1

User devices User 1 - 15 can also be selected.
The number below the list is the address for the slave instrument. The range is $0-25$.
** All devices on the same slave port must utilize the same protocol
** An address of zero (0) will disable the instrument** Some controllers (AC20 for example) can provide dual functions (atmosphere and events) and must have the same address assigned for both.

The slave port is next to the address. The Slave port option can be: Slave 1, Slave 2, or RS-232.
Some instruments may not be shown in the list of instruments. User Instruments 1 through 16 are used to set up a non-listed instrument as a slave instrument using the Generic Instrument Setup menu.

The OK button will set the slave instrument, and the Cancel button will cancel the setup.
The Return button will return the user to the menu screen.

Zone Assignments

WARNING: This screen should not be changed without consulting SSi at (513) 772-0060.
*Slave Instrument Setup must be configured prior to Zone Assignment setup

The zone assignment feature allows the Series 9125 to change set points on all instruments of a multizone furnace. The Series 9125 has up to five temperature and atmosphere zone assignments available (Zone Assignment 1 - Zone Assignment 5). Typically, the first zone is configured to the
 atmosphere or temperature instrument. That is the master set point that will be propagated to the other configured zone instrument set points on set point change.

When using the multi-zone offset feature, the temperature controller assigned as instruments 1 and 2 should be in zones that will not be offset.

Atm Source

This will allow the user to set the atmosphere instrument for the zone assignment. The options are
Loop 1 Instrument 5 Instrument 12 Instrument 19
Loop 2 Instrument 6 Instrument 13 Instrument 20

Atm Zone Number

This option will allow the user to set the zone number for the assignment. The range is $0-5$.

Atm Zone Offset

This option will allow the user to enter an offset for the assignment. The range is -4000-4000.

Temp Source

This will allow the user to set the temperature instrument for the zone assignment. The options are:

Loop 1	Instrument 5	Instrument 12	Instrument 19
Loop 2	Instrument 6	Instrument 13	Instrument 20
Loop 3	Instrument 7	Instrument 14	Instrument 21
Instrument 1	Instrument 8	Instrument 15	Instrument 22
Instrument 2	Instrument 9	Instrument 16	Instrument 23
Instrument 3	Instrument 10	Instrument 17	Instrument 24
Instrument 4	Instrument 11	Instrument 18	Instrument 25

Temp Zone Number

This option will allow the user to set the zone number for the assignment. The range is $0-5$.

Zone Offset, Temp

This option will allow the user to enter an offset for the assignment. The range is -4000-4000.

Furnace Setup

The Furnace Setup menu option is an administrative access only option. Do not make any adjustments on the screen without first contacting Super Systems, Inc. at (513) 772-0060.

PVT Type

There are nine PVT choices for the 9125:

```
% Carbon + Dual Temp
```

\%Carbon Cascade
Dew Point \% Carbon + Redundant TC
Millivolts Dew Point + Redundant TC
Multiloop Millivolts + Redundant TC
\%Carbon: Process variable will calculate for carbon potential along with a temperature loop. Loop 1 is based off of Input 1 (terminals 31, 32 probe sensor millivolts) and Input 2 (terminals 29,30 probe TC). These two inputs together constitute loop 1. Loop 2 comes from Input 3 (terminals 27, 28) which is temperature control.

Cascade: Three loops of temperature control work together in a cascade setting.
Dew Point: Control will be for dew point along with a temperature loop. Loop 1 is based off of Input 1 (terminals 31, 32 probe sensor millivolts) and Input 2 (terminals 29,30 probe TC). These two inputs together constitute loop 1. Loop 2 comes from Input 3 (terminals 27, 28) which is temperature control.
\%Carbon + Redundant TC: This functions the same way as the \%Carbon option with an additional thermocouple for Loop 3. The two thermocouples are used to control carbon, and the operator can choose the setting that will be used.

Millivolts: Control is based off of what the millivolt reading is and also reads temperature.
Dew Point + Redundant TC: This functions the same way as the Dew Point option with an additional thermocouple for Loop 3. The two thermocouples are used to control dew point, and the operator can choose the setting that will be used.

Multiloop: Three loops of control can be assigned as selected.
Millivolts + Redundant TC: Control is based off of the millivolt reading and also reads temperature. Loop 3 is another thermocouple.
\%Carbon + Dual Temp: This functions similarly to \%Carbon. Input 2 is the control TC. IT is not used to calculate carbon potential with input one and to control furnace temperature. Input 3 in the third loop and is another TC.

IMPORTANT: If the 9125 is controlling \% Carbon or Dew Point, control will be disabled if either or both of the following are true:

- Millivolts registered by probe are below 500 mV or above 1300 mV .
- Temperature registered by probe is below $900^{\circ} \mathrm{F}$ or above $2100^{\circ} \mathrm{F}$.

Temperature Mode

This allows the operator to choose either degrees Fahrenheit or degrees Celsius for the temperature. The options are ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$. Pressing OK will set the choice.

Loop 1 Instrument

Loop 1 (typical)	Instrument 5	Instrument 12	Instrument 19
Loop 2	Instrument 6	Instrument 13	Instrument 20
Loop 3	Instrument 7	Instrument 14	Instrument 21
Instrument 1	Instrument 8	Instrument 15	Instrument 22
Instrument 2	Instrument 9	Instrument 16	Instrument 23
Instrument 3	Instrument 10	Instrument 17	Instrument 24
Instrument 4	Instrument 11	Instrument 18	Instrument 25

Loop 2 Instrument

Loop 1

Loop 2 (typical)
Loop 3
Instrument 1
Instrument 2
Instrument 3

Instrument 4

Instrument 5
Instrument 6
Instrument 7
Instrument 8
Instrument 9
Instrument 10
Instrument 11
Instrument 12
Instrument 13
Instrument 14
Instrument 15
Instrument 16
Instrument 17
Instrument 18

Instrument 19

Instrument 20
Instrument 21
Instrument 22
Instrument 23
Instrument 24
Instrument 25

Event Instrument

Allows for a slave instrument (or internal) to be the defined event control device. The types of instruments are: Internal, Instrument 1 - Instrument 25. Internal is typical.

Date and Time

This value is the current date and time on the 9125 controller only (not the local computer or the touch screen, if applicable). The time on the controller is displayed in the 24 -hour format, so $8=8 \mathrm{AM}$, and $14=2$ PM. Note: The date and time of the touch screen can be changed (if necessary) by selecting the date and time in the lower right corner on the touch screen, once the screen software has been shut down and the Windows ${ }^{T M}$ desktop is visible. Then, at the CE screen the date and time can be changed by double taping the time in the bottom right corner and setting it, then select "apply". For this to take effect the screen needs to be rebooted; on the older TPC 642 displays the registry needs to be saved under TPC Configuration icon, the Misc Tab and then reboot the touch screen. The date and time that is recorded on the flash card land therefore the datalog datal is the date and time of the Advantech display, not the controller.

Deviation Alarm Delay

This value is the delay for the alarm if a deviation alarm is detected. The range is 0 to 10000 .

Name

This will allow the user to give the controller a display name.

PV1 Name

This will allow the user to give the first process variable a display name.

PV2 Name

This will allow the user to give the second process variable a display name

PV3 Name

This will allow the user to give the third process variable a display name

Cascade Inhibit

Note: This field is only applicable if the controller is in Cascade mode. This will turn cascade control on or off. When inhibit = enabled, the 9125 functions as a multi-loop controller with three control loops. The options are: enabled or disabled.

PV Difference Cutback

Note: This field is only applicable if the controller is in Cascade Mode. This is used with the Cascade Lower Range EOPV and Cascade Upper Range EOPV to limit the absolute \% output of the furnace loop. This will turn the PV difference cutback feature on or off. The options are: enabled or disabled.

Cascade Lower Range EOPV

Note: This field is only applicable if the controller is in Cascade Mode. This is the cascade lower range end of PV difference. This is used with the PV Difference Cutback and Cascade Upper Range EOPV to limit the absolute \% output of the furnace loop. Between the lower range EPOV and the upper range EOPV, there is a linear interpolation from 0 to the loop 2 output maximum (usually 100%) that determines the maximum $\%$ output for the furnace loop. The range is -300 to 10000 .

Cascade Upper Range EOPV

Note: This field is only applicable if the controller is in Cascade Mode. This is the cascade upper range end of PV difference. This is used with the Cascade Lower Range EOPV and PV Difference Cutback to limit the absolute \% output of the furnace loop. Between the lower range EPOV and the upper range EOPV, there is a linear interpolation from 0 to the loop 2 output maximum (usually 100%) that determines the maximum $\%$ output for the furnace loop. The range is -300 to 10000 .

Example: With the Lower EOPV set to 10 and the Upper EOPV set to 110 , if the load PV is 1700 and the furnace PV is 1710, the full 100% output is available. If the load PV is 1600 and the furnace PV is 1710, the furnace output will not go above 0%. If the load PV is 1655 and the furnace PV is 1710 , the maximum output for the furnace loop will be limited to 55% : $(1710-1655) /(110-10) *(1.0)$.

Multiloop Display

This option allows the user to decide which combination of loops will be displayed on the default status screen. The choices are:

No display	Loop 1, Loop 2	Loop 2, Loop 3
Loop 1	Loop 3	Loop 1, Loop 2, Loop 3
Loop 2	Loop 1, Loop 3	

The Return button will return the user to the menu screen.

user can select a new value. The range is from
-32767 to 32767.

The 9125 controller can be configured to use three (3) different alarms. Each of the alarms consists of an alarm setpoint, alarm source, alarm type, alarm hysteresis, smart alarm, ON delay time, and a 0 SP blocks alarm value. The alarms come from the factory with a default configuration dependent on the application but also can be modified prior to shipment to your facility or in the field by a supervisor. See the section Appendix B - Factory Default Settings for the 9125 Controller for more information on factory default settings for the alarms.

Setpoint

This value is the setpoint for the alarm. Clicking on this value will display an input box from which the

Alarm Source

This option will indicate the source of the alarm. The options are:
PV 1 Value
PV 2 Value
PV 3 Value
Input 1 Value
Input 2 Value
Input 3 Value
Output 1 Value
Output 2 Value
Output 3 Value

Alarm Type

This value is the type of alarm used. Options are:
Process High
Process Low
Band, Normally Open
Band, Normally Closed
Deviation, Normally Open
Deviation, Normally Closed
Band alarm works by looking at a value above and below setpoint. Deviation alarm works by looking at a value either above or below (based upon the setpoint value the user has entered). A few examples would probably be best to explain how to set these up properly.

Hysteresis

This value is the Hysteresis value. The Hysteresis is a set number that works with the alarm to help control a motor or pump longer to reach a set amount to come back into band before it will shut off motor or pump.

Example: Using quench oil as an example, suppose the SP is $200^{\circ} \mathrm{F}$. The alarm is set as a deviation of +10 ${ }^{\circ} \mathrm{F}$. At $210^{\circ} \mathrm{F}$, the alarm is active and the pump will run to cool the oil. With a hysteresis of $8{ }^{\circ} \mathrm{F}$, the alarm and pump will turn off at $202^{\circ} \mathrm{F}$. It will turn back on when it is $10^{\circ} \mathrm{F}$ above setpoint. If the setpoint is still $200^{\circ} \mathrm{F}$, then at $210^{\circ} \mathrm{F}$, it will turn on again.

Clicking on this value will display an input box from which the user can select a new value. The range is from -32767 to 32767.

Smart Alarm

This value is a display of the Smart Alarm status. A smart alarm is an alarm that works with a Process Variable (PV), and, when enabled, it will not be active until the PV is within band of the setpoint. The alarm sounding - if active - will be disabled until within the SP band. When it is in band, the alarm will go active unless on delay time is set.

Example: If the SP is $1700^{\circ} \mathrm{F}$ and the band is $10^{\circ} \mathrm{F}$, the alarm will not be active until the PV reaches 1690 ${ }^{\circ} \mathrm{F}$. The value can be either disabled or enabled.

ON Delay Time

This value is the On Delay Time for the alarm. Clicking on this value will display an input box from which the user can select a new value. The range is from -32767 to 32767.

0 Setpoint Blocks Alarm

This value will allow a 0 setpoint to block an alarm. The options are either No or Yes.

BO/Impedance inhibits alarm

If $\mathrm{BO} /$ Impedance inhibits alarm is turned to Yes, no alarm will sound if the carbon percentage drops because of a burnoff.

Inhibit Source

Alarms can be inhibited in order to prevent false or unnecessary alarm notifications. The Inhibit Source option will allow the user to set the source of the inhibit signal. The options are: None, Input 1 - Input 4, Soak timer inactive (The alarm will not happen if the furnace is in a soak if this option is selected), and. Input 6 - Input 15.

Disable on open input

An alarm can be disabled when an input the open in order to avoid false or unnecessary alarms. This option will allow the user to specify if the alarm is disabled when the input is open. The options are either no or yes. This open is valid only for alarms with input sources.

The Return button will return the user to the menu screen.

Thermocouple Check

This menu option allows the values between up to three thermocouples to be compared to one another. If the thermocouples go out of band, it is possible to set up an alarm that will alert the operators of this error.

Source 1 This assigns the first thermocouple that will be compared. The options are:

Not used

Instrument 1-27
Input 1-3
Source 2 This assigns the second thermocouple that will
 be compared. The options are:

Not used

Instrument 1-27

Input 1-3

Source 3 This assigns the third thermocouple that will be compared. The options are:

Not used

Instrument 1-27
Input 1 - 3
Tolerance Band This allows the operator to set the tolerance band between the thermocouples being compared. The range is -9999 to 9999 .

Source 2 Offset This allows for an offset to be assigned to the second thermocouple and taken into account when the comparison between values is made. The range is -9999 to 9999 .

Source 3 Offset This allows for an offset to be assigned to the third thermocouple and taken into account when the comparison between values is made. The range is $\mathbf{- 9 9 9 9}$ to 9999 .

Relay Assignments

The 9125 controller has eight relay outputs, as well as eight relay outputs for four additional modules. All of the relays have a positive common terminal and independent negative terminals. All of the relays are configured in a normally closed position except relay number eight, which has both a normally closed (NC) and a normally open (NO) terminal. These relays can be configured to work with events, alarms, loops, burnoff and alarm combinations.

Relay Output Terminals:

Relay Output 1 - terminals 7 and 8
Relay Output 2 - terminals 7 and 9
Relay Output 3 - terminals 7 and 10
Relay Output 4 - terminals 7 and 11
Relay Output 5 - terminals 7 and 12
Relay Output 6 - terminals 7 and 13
Relay Output 7 - terminals 7 and 14
Relay Output 8 - terminals 7 and 15 NC
Relay Output 8 - terminals 7 and 16 NO

Relay Output Choices

```
Loop 1 fwd IN1 Relay SP A
Loop 1 rev IN1 Relay SP B
Loop 2 fwd IN1 Relay SP C
Loop 2 rev IN2 Relay SP A
Loop 3 fwd IN2 Relay SP B
Loop 3 rev IN2 Relay SP C
Alarm 1-3 IN3 Relay SP A
Event 0-15 IN3 Relay SP B
Burnoff IN3 Relay SP C
IR sample solenoid
nothing
```

The "Alarm Combination" option will allow the user to select the specific combination of alarms to use. The options are: Alarm 2, Alarm 3, Invert State for Relay, and one of two options in a drop-down box: TC Chk (Thermocouple Check), or EOQ (End of Quench),

The Return button will return the user to the menu screen.

Analog Input Setup

The 9125 controller has three analog inputs. Each of the inputs comes with a factory default configuration dependent on the application. It can be modified prior to shipment to your facility or in the field by a technician or qualified/trained person with the proper security code. Before connecting your input source to the terminals, please verify that the input type is set up correctly. If the Input Type is not correct, do not connect the input source to the terminals, as damage can occur. Please consult SSi by calling (513) 772-0060 before making any changes.

Analog Input Terminals

Analog Input 1 - terminals 31 and 32

Analog Input 2 - terminals 29 and 30
Analog Input 3 - terminals 27 and 28

Input Type

The thermocouple type for most applications can be modified depending on your specific needs. Note some of the inputs DO NOT allow the user to modify the Input type. To change the Input type, first select which input you want to change by selecting it in the pull-down at the top of the screen. The following is a list of the options:

B	S	12.5 volts ${ }^{* *}$
C	T	781.25 mV
E	2.5 volts	195.3125 mV
J	1.25 volts	
K	78.125 mV	
N	19.53125 mV	
NNM	$4-20 \mathrm{~mA}^{* *}$	
R	25 volts ${ }^{* *}$	

** - When the specified input type is selected, a jumper located inside the case will need to be placed on that specific input for reading this selection. If jumper is not placed on input, then damage could occur to the board. Please consult SSI before making any changes.

Filter time

The filter time is a factory applied averaging tool used to help maintain steady control in high EMI environments. The filter time should not be adjusted without consulting SSI. Clicking on this value will display an input box from which the user can select a new value. The range is 0 to 32767.

Initial Scale

This is the initial scale value. This could also be referred to as the starting value. For example, the initial value is the value when 0 volts is on the selected input; or on a $4-20 \mathrm{~mA}$ input, it would be the value at the selected input of 4 mA . Clicking on this value will display an input box from which the user can select a new value. The range is -32768 to 32767.

Full scale

This is the full scale value. Clicking on this value will display an input box from which the user can select a new value. The range is -32768 to 32767 .

Decimal Point Location

This is the decimal point location value. This will affect the PV value and the location of the decimal when it is displayed. Clicking on this value will display an input box from which the user can select a new value.
The range is 0 to 4 .

Open TC behavior

This is the open TC value. The options are: up scale, down scale, one trip point, and two trip points.

Input Offset

The input offset value is algebraically added to the input value to adjust the input curve on read-out. The range is $\mathbf{- 3 2 7 6 8}$ to 32767 .

TRIP POINT EXPLANATION: Setting a trip point will force the value that the controller uses for calculations to a certain value as assigned by the operator. Once the Trip Point Setpoint is reached, the controller will begin reading the value as the Trip Point Force Value, regardless of what the actual value is inside the furnace. The Trip Point Direction allows the operator to choose whether the controller will alter its reading when the trip point is either above or below the setpoint.

Trip Point 1 Setpoint

This is the trip point 1 setpoint value. The range is -32768 to 32767 .

Trip Point 1 Force Value

This is the trip point 1 force value. The range is $\mathbf{- 3 2 7 6 8}$ to 32767 .

Trip Point 1 Direction

This is the trip point 1 direction. The options are: input above setpoint or input below setpoint.

Trip Point 2 Setpoint

This is the trip point 2 setpoint value. The range is -32768 to 32767 .

Trip Point 2 Force Value

This is the trip point 2 force value. The range is $\mathbf{- 3 2 7 6 8}$ to 32767 .

Trip Point 2 Direction

This is the trip point 2 direction. The options are: input above setpoint or input below setpoint.

High Input Limit Setpoint

This is the setpoint for the high input limit. The range is $\mathbf{- 3 2 7 6 8}$ to 32767 .

High Input Limit Hysteresis

This is the hysteresis for the high input limit. The range is $\mathbf{- 3 2 7 6 8}$ to 32767.

Custom Curve

This will allow the user to set the custom curve to use. The curves are set up through the Curve Entry menu option. The options are: None, Curve 1 - Curve 3.

T/C Correction Curve

This will allow the user to set the T / C correction curve to use. The curves are set up through the T / C Correction Curves menu option. The options are: None, Curve 1 - Curve 3.

The Return button will return the user to the menu screen.
Analog Output Setup

The 9125 controller has the option of six analog outputs. The outputs are ranged for a 4-20 milliamp signal or a 0-20 milliamp signal. Each output comes with a factory default configuration dependent on the application. Each output can be modified prior to shipment to your facility or in the field by a supervisor.

Analog Output Terminals
Analog output 1 - terminals 24 and 25
Analog output 2 - terminals 25 and 26
Analog outputs 3, 4, 5, and 6 are enabled by use of an SSi QuadDAC board that connects to two RS485 terminals on the 9125 (terminals 5 and 6 for Slave 1, terminals 22 and 23 for Slave 2). Use the Port Setup menu to configure communication parameters.

Assignment

The analog output assignment can be modified depending on your system requirements. To change the Assignment first select which analog output you want to change by selecting it in the pull-down menu at the top of the screen. The following is a list of the options:

PV 1 retrans	Not assigned
Loop 1 inc	O2 offset log
Loop 1 dec	SP1 retrans
Loop 1 combo	SP2 retrans
PV 2 retrans	SP3 retrans
Loop 2 inc	Disabled
Loop 2 dec	
Loop 3 combo	
PV 3 retrans	
Loop 3 inc	
Loop 3 dec	
Loop 3 combo	
Input 1 retrans	
Input 2 retrans	
Input 3 retrans	

Offset

This is the starting point, the Process Variable value at which you get 4 milliamps if the output is set up as $4-20 \mathrm{~mA}$ (or 0 milliamps if output is set up as $0-20 \mathrm{~mA}$). Clicking on this value will display an input box from which the user can select a new value. The range is $\mathbf{- 3 2 7 6 8}$ to 32767 .

Range

This is a Process Variable value between 4 and 20 milliamps (or 0 and 20 milliamps, depending on setup). Clicking on this value will display an input box from which the user can select a new value. The range is -32768 to 32767.

Note - The range, although not displayed with a decimal point, contains a decimal point that is dependent on the process variable selected. For example, if the offset is 20 mV for 4 mA , and you want 100 mV to be 20 $m A$, then your range should be 80 . If the process variable is temperature, then the range will be 80 , since temperature PVs do not have a decimal. If the PV is \% Carbon, then the range will need to include the two decimal points for \% Carbon. So, a range of 80 will be entered as 8000 . See below for more examples.

Current Selection

Provides the option of 4-20 mA or $0-20 \mathrm{~mA}$ control. Clicking on this value will display an input box with a drop-down list from which the user can select either of the two values listed above.

Offset and Range when assigned to a control loop
Inc : $0=4 \mathrm{~mA}, 100=20 \mathrm{~mA}$
Dec : $0=4 \mathrm{~mA},-100=20 \mathrm{~mA}$

Example: if $4-20 \mathrm{~mA}=800 \mathrm{mV}-1200 \mathrm{mV}$
Offset $=800$ (starting point)
Range $=400$
The Return button will return the user to the menu screen.

Alarm Polarity

This option will allow the user to set up the polarity of the alarms, or determine whether the Normally Closed option or the Normally Open option makes the alarm active. The alarms to configure are: Alarm 1, Alarm 2, and Alarm 3. The options for each alarm are: Normally Open or Normally Closed.

The Return button will return the user to the menu screen.

Alarm Polarity	
Alarm 1 normally closed Alarm 2 normally closed Alarm 3 Rermally open 	

Redundant TC Setup

This option allows the operator to choose which TC to control in a redundant TC setup. The redundant TC setup allows for two thermocouples to be used and measured from. This option can be configured so that the higher or lower is automatically selected or in manual mode so that the operator can choose which TC to use.

Band

The Band lets the user set how far apart the values of the TCs in the redundant setup can be before an alarm is activated. The alarm can be assigned under the Relay Assignment menu option. The range for this is -4000 to 4000.

Delay Time

This is the time in seconds that will pass once the TCs go out of band before an alarm is activated to prevent excessive, unnecessary alarming. The range is 0 to 3200 seconds.

TC Selection

To change this option from TC 1, the select mode must be in manual.

Select Mode

This allows the operator to choose whether the highest or lowest TC will automatically be chosen, or whether it will be manually chosen by the operator. The options are highest, lowest, and manual.

NOTE: If the 9125 has redundant TC active, then digital inputs 2 and 3 can manually override the system and force the selected TC to be TC 1 if input 1 is active or TC 2 if TC 2 is active. If both input 1 and input 2 are active, input 1 will take precedence and make TC 1 active.

Security

This screen will allow the user to set up the security protocols for the system, as well as set up users for the system. Note - The "Classic" view will hide the Users button and only the Level 1 and Level 2 code will be accepted.
There are four levels of menus in the 9125 controller - Operator, Supervisor, Administrator, and SSi Special.

Operator Level

These are functions typically handled by a furnace operator and do not require a passcode.

Supervisor Level

These are functions typically used by a supervisor and require a level 1 passcode. The user name for the Level 1 code for Touchscreen is "Supervisor". The "Level 1 Code" range and the "Web Level 1 Code" rage is $\mathbf{- 3 2 7 6 8 - 3 2 7 6 7 .}$

Administrator

These are functions typically used by an administrator and require a level 2 passcode. The user name for the Level 2 code for Touchscreen is "Administrator". The "Level 2 Code" range and the "Web Level 2 Code" rage is $-32768-32767$.
Series 9125 Operations Manual

Web Change Enable

This option will determine if changes can be made over the 9125 's web page. The options for this are: Enable or Disable.

Minimum Alarm Acknowledge Level

This option will allow the user to determine which security level will be the minimum level for alarm acknowledgement. The options are: Operator, Supervisor, or Administrator.
Example: If Supervisor is selected, then only a supervisor-level or higher can acknowledge an alarm.

Minimum Setpoint Level

This option will allow the user to determine which security level will be the minimum level for sending a setpoint down. The options are: Operator, Supervisor, or Administrator.
Example: If Supervisor is selected, then only a supervisor-level or higher can send a setpoint.

Minimum COF/HF Level

This option will allow the user to determine which security level will be the minimum level for modifying the Carbon Factor or the Hydrogen Factor. The options are: Operator, Supervisor, or Administrator.
Example: If Supervisor is selected, then only a supervisor-level or higher can modifying CO Factor or H Factor.

Minimum Automan Level

This setting determines which security level will be the minimum level for changing the output mode to Auto or Manual.
The options are: Operator, Supervisor, or Administrator.
Example: If Supervisor is selected, then only a supervisor-level or higher can enable Auto/Manual toggling of the outputs.

Clicking on the Operator button will allow the user to modify which menu options the operator-level users will have access to.
Clicking on the Supervisor button will allow the user to modify which menu options the supervisor-level users will have access to.
Clicking on the Administrator button will allow the user to modify which menu options the administratorlevel users will have access to.

If the "Advanced" option is selected, then clicking on the Users button will allow the user to create or modify user information for the Touchscreen. Note - Once the "Advanced" option is selected, a user name will need to be entered when logging into the menu system. A user name will need to be provided even if the Level 1 or Level 2 code is being used.
The New button will allow the user to create a new user for the Touchscreen. A name, password, security level, and email address can be entered. Note - The password and email address field can be left blank, if desired. The "Active" checkbox will keep that user active. An inactive user cannot log into the Touchscreen.
The Edit button will allow the user to edit the information for a specific user.
The Done button will return the user to the Securitymenu screen.

The Return button will return the user to the menu screen.

Curve Entry

Most types of inputs that are used in SSi controllers are already setup with a curve built for most every type of thermocouple available, certain vacuum sensors, etc. However, if an application calls for an input without a standard curve, the curve can be built using this option. Voltages can be paired with corresponding values to create a sensor curve based off of a provided equation or data. This allows the controller to make appropriate readings from the sensor.

The first screen shows that five separate curves can be edited. Selecting one of Curve 1-5 and pressing Edit will display the screen where new curves can be assigned. The type can be toggled between Linear and None.

Thirty-two points can be assigned by selecting one of the points and pressing Edit. This allows the operator to change the Millivolts and the corresponding Value by
 clicking on each option. Pressing OK will save the point. Note that all 32 points do not need to be entered; however, the more points that are entered, the more precise the calculated value will be. Any values that are not entered should be set to values beyond labove or below) the ranges entered.

The Return button will return the user to the menu screen.

Alternate PID Setup

IMPORTANT!

PID Auto Switching must be enabled in the PID Loop Setup menu before Alternate PID Setup settings will be applied.

The Alternate PID Setup menu option allows for different sets of PID values to be used.

There is a choice of Loop 1 Set $1-3$, Loop 2 Set 1 - 3, and Loop 3 Set 1 - 3.

Prop Band (0 for On/Off)

Proportional Band determines the response to the current error. The Proportional Band is the percent of the range of the process variable that will produce 100% output and is the inverse of the proportional gain. A low Proportional Band value results in a larger change in output for a given error. Conversely, a high Proportional Band value results in a smaller change in output for a given error. If the Proportional Band is too small, control may oscillate or be
otherwise unstable. If the Proportional Band is too large the control action may be too sluggish in response to changes within the system. Note: If the Proportional Band is set to 0.0 , only on/off control is performed. The range is $\mathbf{- 1 . 0}$ to 999.0 .

Reset

Reset determines the influence of past errors. The Reset, or integral action lexpressed in repeats per minute), sums the error between the process variable and setpoint over time and adds this accumulated output to the proportional output. A "proportional only" controller generally operates with steady-state error because some error is required to produce control output. The goal of integral action is to drive the steady-state error to zero and eliminate this droop. The range is 0.00 through 10.00 .

Rate

Rate adjusts the response to future errors. The Rate, or derivative action (expressed in minutes), is used to predict system behavior and has a dampening effect. The more the controller tries to change the process variable the harder the derivative will work to counter that effort. This dampening effect can be valuable in reducing overshoot but is most often useful when trying to improve control on systems with significant and predicable lag. The range is 0.00 through $\mathbf{1 0 . 0 0}$. NOTE: The rate is not typically used for carbon control.

Integral Preset

This is the integral preset value. This field provides an offset for the starting point for PID control, also referred to as "Load Line" or "Manual Reset". The range is $\mathbf{- 1 0 0}$ to 100.

Control High Limit

This is the high limit value. The range is $\mathbf{- 1 0 0}$ to 100 .

Control Low Limit

This is the low limit value. The range is $\mathbf{- 1 0 0}$ to 100 .

Aux Analog Input Setup

The Auxiliary Analog Input Setup menu option allows the user an input selection of three inputs per board, three input corrections per board, and three input open T/Cs per board. There are eight (8) boards available. It is configurable for voltage of T/C (universal input), and it is typically used for Load T/Cs, motor speed feedback, current speed devices, and Auxiliary Flow Meters.

Before connecting your input source to the terminals, please verify that the input type is set up correctly. If the Input Type is not correct, do not connect the input source to the terminals, as damage can occur. Please consult SSi by calling (513) 772-0060 before making any changes.

Input 1 - Input 3
This will select the input types for the board. The options are:

T/C B	160 mV	40 mV
T/C C	T/C R	20 mV
T/C E	T/C S	$4-20 \mathrm{~mA} / 124 \Omega$
T/C J	T/C T	$4-20 \mathrm{~mA} / 62 \Omega$
T/C K	2.5 volts	25 volts
T/C N	1.25 volts	12.5 volts
T/C NNM	80 mV	

Input 1 Correction - Input 3 Correction

This option will set a correction curve for the input. The options for the input corrections are: not used, Curve 1 - Curve 3.

Input 1 Open T/C - Input 3 Open T/C

This option will allow the user to set the direction of the open T/C for each input. The options are: Up Scale or Down Scale.

Calibration (Auxiliary Analog Inputs)

The user will need a calibrator capable of outputting a temperature, voltage, and millivolt signal to calibrate the zero, span or cold junction value. The user will need to connect the calibrator to one of the inputs on the data logger for the channel that will be calibrated. It is recommended to let everything (calibrator and data logger) sit for approximately thirty minutes to allow the temperature to achieve equilibrium. Set up the calibrator for the specific thermocouple type, i.e. type K, type J, etc. Then, source a specific temperature, like $1000^{\circ} \mathrm{F}$, or millivolt to the connected input. It is recommended that the actual temperature used be similar to an appropriate process temperature. For example, if your equipment normally operates at $1700^{\circ} \mathrm{F}$, then perform the cold junction calibration using a $1700^{\circ} \mathrm{F}$ signal. It is important to note that when performing a zero or span calibration, do not use regular thermocouple wiring.

Instead, use any kind of regular sensor wire, or even regular copper wire. To perform the calibrations, the user will need a calibrator that is capable of outputting volts, millivolts, and temperature.

The "Zero/Span" tab will allow the user to perform a zero and span calibration on the selected board.
The help button - - next to the "Range" drop-down list will allow the user to select a range based upon an input type if the range is not known.

Select the input type and click on the OK button. The correct millivolt range will be displayed in the dropdown list. Click on the Cancel button to cancel this action.

Below is a listing of the suggested ranges for the various TC types.
TC Type mV Range Chart
TC Type $\quad \frac{\text { Range in } \mathrm{mV}}{17.5}$
B 17.5

C 65
E 65
J 65
K 65
N 65

NNM 65
R 65
S $\quad 17.5$
T 65

Calibration

For calibration videos involving the touch screen, visit http://www.supersystems.com/tech-videos.

Overview

The series 9125 can be calibrated using the Touchscreen interface. Before performing this procedure on a newly installed controller, the unit needs to be powered on for at least 30 minutes for a warm up period.
The series 9125 has three analog inputs. Each range has a zero and span calibration value. A cold junction trim value must be calibrated for thermocouple inputs. There
 are two analog outputs each with a zero and span value.
To calibrate an input or output, select the desired option and continue. Note - Even though the "Cold Junction" option is listed first, the inputs and outputs should have the zero and span calibration performed BEFORE performing a cold junction calibration.

Equipment needed

A certified calibrator(s) with the ability to input and read millivolts, milliamps and thermocouples is required. The appropriate connection leads are also required. A 24 VDC 75 -watt power supply is required.

Notes

Input 1 - terminals 31 and 32
Input 2 - terminals 29 and 30
Input 3 - terminals 27 and 28
Output 1 - terminals 24 and 25
Output 2 - terminals 25 and 26

Zero Calibration - Inputs

To perform a zero calibration, click on the "Zero" option - The circle will be filled in with a dot for the selected option. For a zero calibration, the recommended value to source is 0 mV .
Click on the Calibrate button to begin the calibration. A progress bar will be displayed along the bottom of the screen giving the progress of the calibration.

Span Calibration - Inputs

To perform a span calibration, click on the "Span" option - The circle will be filled in with a dot for the selected option. For a span calibration, the
 recommended value is 90% of the full range. For 2 mV . The recommended value can be changed by example, if the range is 80 mV , then the span should be 72
clicking on the value, and entering the new value that way. Click on the Calibrate button to begin the calibration. A progress bar will be displayed along the bottom of the screen giving the progress of the calibration.

Zero Calibration - Outputs

To perform a zero calibration, click on the "Zero" option - The circle will be filled in with a dot for the selected option. When ready to start the calibration, click on the Ready button. The user will then have to measure the current at the appropriate output terminals and enter that value on the button next to the Ready button by clicking on that value button and entering the value.
Click on the Calibrate button to begin the calibration. A progress bar will be displayed along the bottom of the screen giving the progress of the calibration.

Span Calibration - Outputs

To perform a span calibration, click on the "Span" option - The circle will be filled in with a dot for the selected option. When ready to start the calibration, click on the Ready button. The user will then have to measure the current at the appropriate output terminals and enter that value on the button next to the Ready button by clicking on that value button and entering the value.
Click on the Calibrate button to begin the calibration.
A progress bar will be displayed along the bottom of the screen giving the progress of the calibration.

Cold Junction Calibration

The "Cold Junction" option will allow the user to perform a cold junction trim on the selected board. To determine if a cold junction adjustment is needed, hook up the calibrator with the appropriate T/C wire attached, and source a temperature to the input. It is recommended to use an operating temperature to source. For example, if the furnace typically runs at $1700^{\circ} \mathrm{F}$, then $1700^{\circ} \mathrm{F}$ should be sourced to the input. If the displayed value does not equal the value being sourced, then a cold junction adjust would be necessary. The "Offset" will be the amount of change desired. For example, if $1700^{\circ} \mathrm{F}$ is being sourced, and the "Value" is showing $1696.4^{\circ} \mathrm{F}$, then the "Offset"

would be set to 3.6. If $1700^{\circ} \mathrm{F}$ is being sourced, and the "Value" is showing $1702.3^{\circ} \mathrm{F}$, then the "Offset" would be set to -2.3.
Click on the Calibrate button to begin the calibration.
Wait 120 seconds and verify with a source calibration device with the correct T/C type. Note: During a normal calibration procedure, the user should zero and span all of the inputs first and then perform a cold junction calibration, if necessary.
It is recommended after each Cold Junction calibration to source a value in and check what the displayed temperature reading is.

Click on the Return button to close down the screen.

Configuration

This option will allow the user to set some general configuration settings. The list of configurable items is:

- Log Maintenance
- Event Text
- Compact Database
- Screen
- Datalogging Setup
- Repair Database
- Device Configuration
- Alarm Text
- Time Synchronization
- Probe Management
- Maintenance
- Read/Write Data

Log Maintenance

This option will allow the user to purge, or delete, log files, starting from a specific date. All log files from on or before the selected date will be purged. The user can purge log files from the Alarm Log, Event Log, or System Log.

NOTE: The touch screen may require a login to access this menu.

Event Text

This menu option will allow the user to configure the text for the input and output events for the 9125. Select whether to edit the Input events or the Output Events. Note - The list of events can take a few seconds to load. The screen will refresh after the list has been loaded. There are a total of 31 input events, and 47 output events. Highlight the event to be changed and click on the Edit button. This action will display the on-screen keyboard, which will allow the user to modify the event text. To save the changes to the event text, click on the Save button. Clicking on the Return button will not save any of the changes made. Note - Clicking on the Save button will not close the Edit Event Text screen. A save must be performed before switching from the input events to the outputs events, and vice versa. It is also recommended that after you return to the main overview screen, you perform a shutdown using the 9125 menu, and then restart the screen. This will save the registry correctly.

Compact Database

Compacting the database will free up extra space, which will speed up the amount of time it takes the software to communicate with the database. This should be done as needed. Please consult SSi (513-7720060) for details.

- COM1
- COM2
- COM3
- COM4
- Ethernet

If COM1 through COM4 is selected, the user will have to set the Address and the Baud rate as well. If Ethernet is selected, then user will have to enter the IP address of the 9125 instrument.
The Address option is the slave address of the 9125 instrument for the COM port communications, or the Ethernet IP address for Ethernet communications. For the COM port communications, the address will

Screen

IMPORTANT!

The touch screen is configured by SSi prior to first use. Consult SSi before making changes to these settings. Cabling changes may be required.

This menu option will allow the user to determine how the Touchscreen will communicate with the 9125 instrument. The Media option will be the type of connection the Touchscreen is using to connect to the 9125. The options are:
range from 1 to 250. For Ethernet communications, the address must be supplied in a 999.999.999.999 format, or it will not be accepted.
The Baud option is the baud rate for the COM port communications. The options are:

- 1200
- 2400
- 4800
- 9600
- 14400
- 19200
- 28800
- 38400
- 57600
- 76800
- 115200

Datalogging Setup

Note - Contact Super Systems before making any changes on this screen, since any changes made can have an adverse effect on the data being displayed.
This menu option will allow the user to modify which registers in the 9125 will be used as datalog data.

the Add
button to add a new set of data values, or click on the Edit button to edit an existing set of data values. Click on the Delete button to delete a set of values. To add or edit data values, enter the initial offset of the register, as well as the number of sequential registers to read for. Using the example from the image, the data values added would be: $850,851,852,853$, and 854 . Clicking on the Save button will save the new data value registers. Note - The Save button must be clicked on to save any changes to the datalog data, including resetting the configuration. Clicking on the Cancel button will cancel the action. Clicking on the Reset button will reset the values to the original configuration. Note - any changes made to the data values will need a restart of the application before those changes will take effect. Clicking on the Descriptions button will display any descriptions for the data values. The default description for a data value is the data value's register. So the default description for data value 25007 is " 25007 ". Changing this to "Temperature", for example, would make it more descriptive. Register 25007 holds the actual temperature value for the 9125.

To add a new description, click on the Add button. To insert a new description, click on the Insert button. To delete a description, click on the Delete button. To edit an existing description, click on the Edit button. The Add or Insert feature will only create valid descriptions if there are existing data values without descriptions. Click on the OK button to save the description changes. Click on the Return button to cancel any changes and return to the previous screen.

Repair Database

This feature will make attempted repairs on all SQL databases associated with the screen. Clicking the Repair Database button will display a timer icon while the repair is taking place.

Device Configuration

This option allows the user to customize the text that will display with each loop (Custom Look 1, 2, 3 Text fields). In order to do this, click on the blue box next to the corresponding Loop number. A keypad will be displayed, and the appropriate text can be written in. Press enter to save.

The Compact Database button will compact the mb.sdf database file that is located on the Touchscreen. When records are added, space is reserved in the database table for the maximum amount of characters, regardless of the actual number of characters in the record. Once the record is added, this space is not released. Instead, it will still be associated with the record, thereby adding to the total disk space and slowing down the communication time with the database. Compacting the database will free up this extra space, which will speed up the amount of time it takes the software to communicate with the database.

Alarm Text

This menu option will allow the user to configure the text for the three main alarms on the 9125 as well as the PLC alarms. Highlight the alarm to be changed and click on the Edit button. This action will display the on-screen keyboard, which will allow the user to modify the alarm text. To save the changes to the alarm text, click on the OK button. Clicking on the Cancel button will forgo saving any of the changes made.

Time Synchronization

This option allows the user to set up the touch screen to sync the system time with an Internet-based time server.

Probe Management

This option allows the user to register a probe within the 9125 by entering its serial number. Doing so creates a tracking history of the probe burnoffs and impedance tests associated with it. Trends can be monitored this way and the impedance of the probe can be traced to help estimate its life expectancy.

Maintenance

Maintenance items are added from the Configuration -> Maintenance menu. To add a maintenance item, first tap the Add button. Use the selections to determine the type of maintenance item and corresponding details to add.

Use the Edit button from the Maintenance Items menu to edit an existing maintenance item. Use the Delete button to delete an item.

Types of Maintenance Items

The following types of maintenance items can be programmed: Timed Event, Conditional Timer, Conditional Counter, and Totalizer.

- Timed Event. A timed event is a maintenance event that is based on intervals of time. For example, assume a plant has burners that need to be inspected once per week. The Timed Event can be programmed to remind operators to perform this maintenance check. In the example shown, a Timed Event called "Burners" has been created. The Interval is Weekly, and the number of Weeks for which the maintenance item will remain active is 20 . The message that will appear on the main 9125 touch screen is "Check condition of burners".

- Conditional Timer. The conditional timer maintenance event is based on the status of a selected controller register over a defined period of time. For example, a maintenance task may need to be performed when a register value is above a certain threshold for 1 hour. If the register value is above that threshold for 1 hour, a maintenance message will be displayed on the main 9125 screen.

In the example shown, when the value for Register 25007 (Temperature PV) is greater (>) than 500.00 (than field) for 5 minutes (Target), a "Check Alloy" message will be displayed on the main screen for the 9125 touch screen.

The Expression option allows you to program a scaled value that will be compared to the value entered in the than field. In the example shown at right, the value of the register will be multiplied by 0.1 (scaled to 10% of the original value) before it is compared to the value in the than column.

- Conditional Counter. The conditional counter is used to generate a Maintenance alert based on a register bit value changing a defined number of times. The Register is the register number that will be evaluated for changes. The first Bit setting is the bit number. The Target is the number of times that a change will need to take place before the Maintenance alert is triggered. The second Bit setting defines the change that will increase the Target count: On, Off, or Change. "Change" is any change from a previous state; therefore, a change from On to Off and a change from Off to On would cause the Target count to increase.

In the example shown, register location 25009 , bit 8 will be evaluated for a state change. After the state changes to $0 n$ (second Bit setting) 5 times (Target), the maintenance alert will be triggered.

- Totalizer. The totalizer works as an accumulator that adds the value of a register to previously summed values. The Totalizer will add the register value to the accumulated value each minute. This feature be useful for monitoring repeated changes that result in the need for maintenance or inspection. One example may be a furnace door opening and closing as loads are charged and removed from the furnace.

In the example shown, the value of Register 25029 will be monitored and added to previously summed values of the register every minute. After the Totalizer reaches 100 (Target), a maintenance alert
 "Check furnace door" will be displayed on the main 9125 screen.

The Expression option allows you to program a scaled value that will be applied to the accumulated value. For example, if *. 1 is entered as the Expression, the register value recorded each minute will be multiplied by 0.1 ; the scaled value will then be added to the existing sum.

The figures below illustrate how the Totalizer works with and without an Expression applied.

Value of Selected Register at:					
First Minute	Second Minute	Third Minute	Fourth Minute	Fifth Minute	Totalized Value
5	20	6	5	11	47

Totalizer function without Expression applied

Value of Selected Register at:					
First Minute	Second Minute	Third Minute	Fourth Minute	Fifth Minute	Totalized Value
5	20	6	5	11	
0.5	Scaled Value with Expression of *.1 applied:				

Totalizer function with Expression applied

From the Maintenance menu laccessible from the main menul, you can view a list of scheduled and completed maintenance items.

Operator level access allows the user to monitor the Status of maintenance items and to use the Maintenance Report functions.

Supervisor level access provides all of the above functionality and the ability to Edit Current Records. Administrator level access provides all of the above, as well as the ability to Edit Security Settings for the maintenance menu.

Status

The Maintenance Status screen provides the ability to view the status of maintenance items, mark items complete, and change the status condition format. If a maintenance item is not due, it will appear in black lettering. If the item is due, it will appear in red lettering. The Show Due Only checkbox, when checked, will cause only those items that need to be completed ("Due") to be displayed. When a maintenance line item is selected, the Complete button allows you to mark a maintenance item complete. The Condition: button allows you to change the status from Total Complete to Percent to Total.

Maintenance Report

The Maintenance Report window provides a log of maintenance items completed on a daily, weekly, or monthly basis beginning at a defined date.

Edit Current Records

With this option, you can edit existing maintenance records. The screen will display maintenance condition in a way similar to the Maintenance Status menu, except that red lettering is not used for items that are due; the condition types can be changed in the same way as on the Maintenance Status screen.

To edit an item, select the item and tap Edit. The Edit Record screen will appear, allowing you to change parameters of the record (such as start date) based on the type of maintenance item.

Edit Security Settings

Using this menu, you can change security settings for completing maintenance items and editing maintenance records. By default, both operators and supervisors can complete maintenance items, and only supervisors can edit records. (Of course, an administrator can do all of these. Administrator access is required to edit security settings.

To change a security setting, select the item in the Allowed Item list. Tap Toggle Operator to change the Operator value between True and False. Tap Toggle Supervisor to change the Supervisor value between True and False. If a value is true, it means that the corresponding access level is allowed to
 perform that function. If a value is false, it means that the corresponding access level is not allowed to perform that function.

Tap Save when finished updating settings.

Read/Write Data

This menu option is protected by the SSi special passcode. Contact SSi at (513) 772-0060 to obtain this passcode before making any changes. This menu option is used mainly for technical support reasons. It will read the registers from the 9125 and display those registers on the screen. The user will be able to read from and write to the 9125's registers. When the screen is first displayed, it will read the first 100 registers from the 9125 and display them in a column format. The top of the list will show " 0 ", " 10 ", " 20 ", etc. These are the column headers. Each value in the column will be a logical increment of the header, where the first value in the column equals the header value. For instance, column "0" will start with register 0 , which in the picture has a value of
 " 101 ". The next value down is register 1 , which has a value of " 5 ". The next value down is register 2 , which has a value of " 1 ", etc. So, column " 40 ", 4 values down is register is register 43 , which has a value of "9999".
The number box in the top left of the screen is the beginning register to read from. This will default to 0 when the screen starts. To read registers 100 - 199, edit the value to read "100". Note - changing the value will automatically begin the read process. This process could take a few seconds to complete. The "Write offset" value will allow the user to write a specific value listed in the "Write value" box to the register listed in the "Write offset" box. Click on the Write button to write the value to the register. Click on the Return button to return to the Configuration menu.

A/I Module Offset Correction

The Analog Input module offset correction menu option gives the user the ability to offset any input on any A / I module for up to forty (40) inputs. Input correction curves can also be applied to inputs 1 through 40 . The offset can be in degrees + or -, and it is typically used to compensate for incorrect T/C wires.

Enable Offsets for Aux AIB

This option will determine if the offsets entered will be applied on the inputs. The options are: Yes or No.

Input 1 - Input 40

This will be the offset for the specified input. The range of the offsets is $\mathbf{- 5 0 . 0}$ to 50.0 .

Input 1 Correction - Input 40 Correction

This will allow the user to enter a correction curve, if desired, to inputs 1 through 40. The options are: Not Used, Curve 1 - Curve 7.

Aux Setpoint Configuration

Aux Setpoint Configuration is an automatic setpoint retransmission with a corresponding custom offset and delay to one or more of the first 3 configured slave instruments. The delay is in minutes and is only active when the setpoint is dropped. This feature would most commonly be used to keep the alarm setpoint of an overtemp tracking the furnace's main setpoint (with offset). The delay allows the furnace time to cool below the level specified so that there is no overtemp alarm when the furnace is cooling.

Note: If the setpoint is 0 , then the retransmission is blocked.

T/C Extension Correction Curves

Series 9125 Operations Manual

This menu option will allow the user to set up to three TC correction curves for the 9125 controller, as well as three auxiliary correction curves (extension curves). Clicking on the desired curve will display the curve edit form. Note: If the first "Temp" value and the first "Error" value are both zero, then the curve will not be set. The user can enter up to ten "Temp"/"Error" combinations.

The range for the "Temperature" field is $\mathbf{- 3 2 7 6 8}$ to 32767.

The range for the "Error" field is $\mathbf{- 3 2 7 6 8 . 0 0 0}$ to 32767.000.

Generic Instrument Setup

The generic instrument's data will be stored in certain registers on the host instrument, such as the 9125 controller. Each instrument is allotted a certain set of registers, starting with register 1000. To determine the beginning register, use the following calculation: (100 * generic instrument's number (1 16) +900 . Therefore, instrument 1 would begin at register 1000: (100*1) + 900. Instrument 7 would begin at register 1600: $(100 * 7)+900$. Each instrument is allotted 100 registers, therefore, instrument 1 's allotment is from register 1000 to 1099 on the 9125 controller, instrument 2's allotment is from register 1100 to 1199 on the 9125 controller, etc.
 The Generic Instrument Setups menu is split into two parts: Coms, and Data. The screen lists the generic instruments from Instrument 1 to Instrument 16. Select the desired instrument to configure, then choose Coms or Data.

Coms

The three reads can be set up on this screen.

Read 1 Register, Read 2 Register, Read 3 Register

The Read X Register field will be the register in the 9125 controller that the instrument will read from. The range is $0-32767$.

Read 1 Count, Read 2 Count, Read 3 Count

The Read X Count field will be the number of successive registers to read. The range is $\mathbf{0 - 1 0 0}$.
Read 1 Storage Offset, Read 2 Storage Offset, Read 3 Storage Offset
The Read X Storage Offset field will be the offset in the generic instruments registers (1000-1099 for Instrument 1, 1100 to 1199 for Instrument 2, etc). The range is 0-100.

Data

The Process Variable (PV), Setpoint (SP), and Output (Out) can be set up from this screen. Select the desired option from the drop-down list to configure those settings.

Offset
The Offset field is the instrument's register offset. The range is $0-32767$.

Instrument Register
The Instrument Register field is the register in the 9125 controller. The range is $0-32767$.

Input Type
The Input Type field will determine what kind of type the value will be. The options are: Integer, Big Endian, Big Endian Byte Swap, Little Endian, or Little Endian Byte Swap.

Exponential

The Exponential field will determine if there is an exponent value. For "Integer" Input Types, exponents do not apply, so this field is not modifiable. If the Input Type is not "Integer", the options for the exponential are: Yes or No. This will cause the Scaler to be a power of 10 .

Input Scaler

The Input Scaler field will determine the input scaler range. The Scaler is a power of ten in the range - $\mathbf{3 0}$ to +30 .

Output Type

The Output Type will determine what kind of the output value will be. The options are: Integer, Big Endian, Big Endian Byte Swap, Little Endian, or Little Endian Byte Swap.

Exponential

The Exponential field will determine if there is an exponent value. For "Integer" Input Types, exponents do not apply, so this field is not modifiable. If the Input Type is not "Integer", the options for the exponential are: Yes or No. This will cause the Scaler to be a power of 10 .

Output Scaler

The Output Scaler field will determine the Output Scaler range. The Scaler is a power of ten in the range 31 to +31 .

DF1 Configuration

This option allows the information data from the 9125 to be sent to the PLC DF1 Register map.

My Node:

This option will allow the user to select the node. This node must not exist anywhere else on the computer's network. The range is 0 to 30000 .

PLC node:

This option will allow the user to select the PLC node. This must be the node address of a PLC. The range is 0 to 30000.

PLC read table:

This option will allow the user to select the PLC read table. The range is 8 to 255 .

PLC write table:

This option will allow the user to select the PLC write table. The range is 8 to 255 .

PLC intermessage delay:

This is the delay time (in milliseconds) between requests sent to the PLC from the 9125 controller. The request can be for any read or write transaction between the PLC and the 9125 . The range is $51-5000$.

Tuning Assistant

The Tuning Assistant menu option will allow the user to automatically generate the PID loop settings for the temperature control loops in the 9125 controller. Select the loop to tune and click on the Edit button to auto tune that loop.

Note: The four buttons at the bottom of the screen: Use UD (Under Damped), Use CD (Critically Damped), Use OD (Over Damped), and Use PI will be inaccessible until some PID settings are loaded into the PID settings list above the buttons. The Return button in the bottom right of the screen will display the previous screen.

The
"Conservative" option will allow the user to minimize, if not remove, the possibility for an overshoot of the setpoint. If a small overshoot is acceptable, leave the "Conservative" checkbox unchecked. If, however, no overshoot is desired, then checking the "Conservative" checkbox will accomplish this.

The "Max Output" checkbox allows you to set a maximum output percentage; this feature is useful when output may need to be limited due to physical characteristics of the furnace.

The current PV value, along with the setpoint, is listed above the PID settings list.

Pressing the Start button will begin the auto tune process. Note: The process may take a few seconds to start. The "Idle" line will change to display the process for the auto tune. The line will display a pointer value.

Note: The Start button will be disabled while the tuning is running. Pressing the Abort button will abort the process. If the Cancel button is pressed while a tuning is running, a message box will be displayed confirming the action.

During the tuning, the temperature will oscillate around the setpoint 3 times before Tuning Assistant suggests tuning parameters. Depending on the heating and cooling abilities of the equipment, this can take a few minutes up to a few hours.

When the tuning is finished, the PID settings list will be populated with suggested values and the four buttons underneath will be enabled. The line above the PID settings list will read "Idle" again as well.

The user has the option to select only one of these sets of values: either the Under Damped set, the Critically Damped set, the Over Damped set, or the PI set. To select the set of values, press the corresponding button. For example, to select the Critically
Damped set of values, press the Use CD button.

The under damped values will reach the setpoint faster, but there will be more overshoot involved.
The over damped values will work to minimize the overshoot, but it will be slower than the under damped values.

The critically damped values provide a balance between the underdamped and overdamped values with regard to time and overshoot.

The PI values are the proportional band and the reset value (the P and the /from P / D).
Once a set of values has been accepted, the user can press the Return button to exit the screen. The accepted values can be viewed on the PID Loop Setup menu option. In future tuning sessions, the most recent tuning parameters will be retained and adjusted PID sets will be offered.

PLC Data Mapping

This option allows the user to custom map data from registers inside the PLC to the registers in the controller, and vice versa. The 9125 registers for mapping use a hexadecimal number to decode so 4100 hex will get instrument 1 offset 0 . 4101 hex will get an instrument 1 offset 1 .
NOTE: Convert the Hexadecimal value to Decimal value before entering it into the 9125 .
4400 Hex is 17408 Decimal.

Analog Input Correction Curves

This option allows the user to edit a curve on an input 1,2, or 3 at a specific temperature point. Select the appropriate curve and press Edit to customize specific points.

Select the point to be changed, and press Edit again. Input the correct Temperature and Error, and press OK to save.

Instrument Calculation

The Instrument Calculation menu allows programming code-like lines to be executed at a variable time interval per step. Note: It is important to contact Super Systems at (513) 772-0060 before creating or modifying any Instrument Calculation customization.

General Description

The Instrument Calculation allows for fifty (50) lines of program and fifty (50) program variables. Program
 variables allow for storage on intermediate results of calculations.
A program variable is designated by a v followed by a number from 0 to the number of variables - 1 .
A Lower or Upper case " V " is valid, as well as leading zeroes. The following are all considered the same variable: V3, v3, v0003.
The 9125's Modbus registers can be used as input variables in the equations without restriction. To protect the instrument, Modbus registers are restricted as output registers.
Modbus registers are designated by an upper or lower case " M " followed by a number.
Note - The standard Modbus routine is called to retrieve the Modbus variable, therefore a 0x8000 (-32768) will be returned for an invalid register.
Note - Modbus registers are stored with integer values, so adjustments will need to be made for decimal values.
If the instrument can have external analog input boards, or the instrument is a Video Recorder or DAQ, these inputs can be accessed directly as A1 through A40. By using the "A" designation, the Modbus register number is not needed and the variable is scaled to the correct value (decimals included) based on the input type specified.
In a Video Recorder, the slave instrument data slots can be defined as variables D1 through D32. D31 and D32 are extra slots and have no restrictions as output variables. D1 through D30 are shared with the first ten (10) slave instruments in groups of three (3) - PV, SP, PO - and caution should be used when assigning as outputs.
A line in the program of the instrument calculation must start with a variable or a keyword.
Variables must be followed by an equal sign (=) and then an expression. The expression can be a simple assignment (V1 $=3$) or a variable operation variable as described below (V1 $=\mathrm{M} 225 * 0.1$).
Keywords MUST be entered in capital letters only.
The list of valid keywords is: IF, ELSE, ENDIF, QUE, RLY, and END.
"IF" must be followed by an expression which is a variable, relationship operator, then variable.
The list of valid relationship operators is: > (Greater Than), < (Less Than). = (Equals), >= (Greater Than or Equal To), $<=($ Less Than or Equal To), != (Not Equal To), and $==($ (Equal To). Note - The " "="and "==" relationship operators are identical.
The list of valid bitwise operators is: \& (AND), I (OR), ^ (XOR), << (Left Shift), and >> (Right Shift).
The result of the "IF" relationship test determines if the lines following the "IF" statement will be executed or not.
The "ELSE" and "ENDIF" must be on a line by themselves. "ELSE" will toggle the program based on the result of the "IF" test. "ENDIF" will close out the "IF".

Example:
IF V1 >= 30
$\mathrm{V} 3=\mathrm{V} 2 * 1.5$
ELSE
V3 = 5
ENDIF
In this example, if the value in V 1 is greater than or equal to 30 , then the value of V 3 will be the value of V 2 multiplied by 1.5. If the value in V 1 is less than 30 , the value of V 3 will be 5 .
EVERY"IF" must have a closing "ENDIF". However, the "ELSE" is optional.
The "QUE" is used to send data to a slave instrument and must have three (3) variables separated by spaces. The first is the slave instrument number, the second is the register number, and the third is the data to send.
Example:
QUE 31129 V1
This example will send the value of V 1 to register 1129 on instrument 3.
The "RLY" is used to control a relay if the relay assignment is 999 . The "RLY" must be followed by a variable which is the relay number ($1-8$) and a relationship expression.
Example:
RLY 5 M554 < 2
This example would turn Relay 5 ON if the communication status for instrument 5 was bad.
The "END" keyword will stop the lines from running, and start over from line 1.
There are a few functions that are available as well. The list of valid functions is: FSIN (Sine), FCOS
(Cosine), FEXP (Exponent), FLOG (Logarithm), FLN (Natural Logarithm), FSQRT (Square Root), FABS
(Absolute Value), and FPOW (Power). The Sine and Cosine functions need to have the parameter in radians. A function must be in all caps and begin with an "F" and have a pair of parenthesis. An undefined function returns the value of the expression in the parenthesis. Note - A pair of parenthesis by themselves is considered an undefined function.
The instrument calculation has limited parsing ability. This is kept to variables, operation, variable - i.e. V1
$=12.25 *$ V2. Another example is $\mathrm{M} 128=\mathrm{V} 1 / 100$.
A negative sign (-) in front of the number is considered part of the number - i.e. $\mathrm{V} 1=-2.55+\mathrm{V} 2$.
A variable to the parser is one of the following: a program variable ($V x x$), a Modbus register ($M x x x$), a
number, or a function.
Example:
V1 = (V2 * 1.35) + (V3 * V4)
This example will multiple V2 by 1.35 and multiply V 3 and V 4 together, and add those two results and store that value in V1.
The maximum length of a program line is thirty-one (31) characters.
The following are the valid mathematical operators: + (Addition), - (Subtraction), * (Multiplication), /
(Division), and \% (Modulo Divide - integer only).
The difference between Division and Modulo Division is that Modulo will always return an integer value.
Example:
$11 / 4=2.75$
$11 \% 4=2$ (The .75 will not be returned)

Calculation Time In MS (0 to Disable)

This is the calculation time for the calculations. This will specify the delay between executing a line. Each line has the same delay between them, even if they are blank. A value of zero (0) will keep the calculations from being performed. The range is $0-10000$.

Editor

This option will display the screen where the calculations can be entered.
To edit a line, click on the Edit button. This will bring up the keyboard, which will allow the user to change the text for the calculation. If Edit is clicked on a blank line, a new calculation can be entered. To Insert a blank line in between lines, select the line BELOW where the inserted line is going to go and click on the Insert button.
To delete a line, highlight the line and click on the Delete button.
To erase a line, highlight the line and click on the Clear button.

Chapter 3 - Configurator 2.0 Menus

The following section will detail the menus that are found with the Configurator 2.0 software for the 9125 controller.

Burnoff

Configurator - Burnoff menu option

When a probe is in a furnace, soot will collect in the end of the probe, which will have a negative effect on the performance of the probe. Burnoffs are used to clean out the built-up carbon by burning it off of the probe.

Burnoff:

Clicking on this value allows users to manually initiate burnoff procedure. The user will have to confirm this action

Probe Burnoff

Initiate probe burnoff?

Configurator - Confirm burnoff

The "Test Status" will show that a burnoff is in progress.

Impedance Test:

Clicking on this value manually turns on/off the impedance test (this can only be initiated manually). This test lasts 30 seconds. The user will have to confirm the action.

Impedance test
 Initiate impedance test?

Configurator - Confirm impedance test
The "Test Status" will then become "Impedance Test".

Cancel:

Clicking on this value will manually turn off both the burnoff and the impedance test. The user will have to confirm this action.

Probe Burnoff

Cancel probe test?

Configurator - Confirm cancellation

Next Burnoff: (shown in minutes):

This value is a displayed calculation based on the burnoff time set in the Probe Burnoff Setup menu option. It displays the number of minutes until the next burnoff will be initiated.

Test Status:

This value displays the current testing status. The list of possible values are: Burnoff, Burnoff Recovery, Idle, Impedance Recovery, or Impedance

Timer:

This value shows the remaining time, in seconds, for the Burnoff / Impedance Test / Recoveries.

mV :

This value is a display of the current millivolt input value during a burnoff or impedance test.

TC:

This value is a display of the current probe thermocouple input value during a burnoff or impedance test.

Start mV:

This value is a display of the millivolt input value at the beginning of the Burnoff or impedance test.

Start TC:

This value is a display of the probe thermocouple value at the beginning of the burnoff or impedance test.

Last Burnoff:

This value shows the date and time of the last burnoff.

Last Impedance Test:

This value shows the date and time of the last Impedance test.

Last Recovery:

This value is a display of the time in seconds it took the millivolt input to return to 1% of the Start mV .

Last Min mV:

This value is a display of the minimum millivolts measured during the last burnoff or impedance test.

Last Impedance:

This value is a display of the measured resistance, in Kohms, after the last impedance test.

Last Max TC:

This value is a display of the maximum measured probe thermocouple input value during the last burnoff.

Slave Instruments

Slave Instruments		\checkmark
Parameter	Value	
Instrument 1 [N/A]	0	
Instrument 2 [N/A]	0	
Instrument 3 [N/A]	0	
Instrument 4 [N/A]	0	
Instrument 5 [N/A]	0	
Instrument $6[\mathrm{~N} / \mathrm{A}]$	0	
Instrument 7 [N/A]	0	
Instrument 8 [N/A]	0	
Instrument 9 [N/A]	0	
Instrument 10 [N/A]	0	
Instrument 11 [N/A]	0	
Instrument 12 [N/A]	0	
Instrument 13 [N/A]	0	
Instrument 14 [N/A]	0	
Instrument 15 [N/A]	0	
Instrument 16 [Bad]	0	
Instrument 17 [Bad]	0	
Instrument 18 [Bad]	0	
Instrument 19 [N/A]	0	
Instrument 20 [Bad]	0	
Instrument 21 [Bad]	0	
Instrument 22 [OK]	6	
Instrument 23 [OK]	1	
Instrument 24 [OK]	3085	
Instrument 25 [OK]	0	
Instrument 26 [OK]	0	
Instrument 27 [N/A]	0	
Instrument 28 [N/A]	0	

Auxiliary Analog Input

This menu option shows the process variables for the three analog inputs of the 9125 controller. It also shows the input types and any information from attached slave analog input modules. Note: None of the values can be modified on this screen.

This page is a display of the current process variables of each of the slave instruments communicating with the 9125 controller. Note: None of the values can be modified on this screen.

For setup of the auxiliary instruments, go to the menu item Slave Instrument Setup

Auxiliary Analog Input

Parameter	Value			
Input 1	1748			
Input 2	9999			
Input 3	9999			
[M1 \|OK	0.0]TC 1	1749.5		
TC 2	3307			
TC 3	3307			
[M2 \|Bad $\mid 0.0]$ TC 4	-32640			
TC 5	-32640			
TC 6	-32640			
[M3 \|Bad $\mid 0.0$ TC 7	-32640			
TC 8	-32640			
TC 9	-32640			
[M4 \|Bad $\mid 0.0]$ TC 10	-32640			
TC 11	-32640			
TC 12	-32640			
[M5 \|Bad $\mid 0.0$ TC 13	-32640			
TC 14	-32640			
TC 15	-32640			

Manual Event Control

Events are assignable outputs. Typically, they are used to turn process gases off and on and tell the equipment to do a variety of tasks. The Manual Event Control submenu allows the user to force the events off or on.

Manual Event Control		
Parameter	Value	
Event 0	off	
Event 1	off	
Event 2	off	
Event 3	off	
Event 4	off	
Event 5	off	
Event 6	off	
Event 7	off	
Event 8	off	
Event 9	off	
Event 10	off	
Event 11	off	
Event 12	off	
Event 13	off	
Event 14	off	
Event 15		
Turn off all events		
Turn ON all events		

The Manual Event Control menu option shows the user all of the events ($0-15$) and their current status. It also allows the user to manually control the status of any event by clicking on the value. A single click will display an input box that will allow the user to select either an On value or an Off value.

Abstract

WARNING!

Before assigning or changing events, be certain that you are familiar with the function of the event whose status you are going to change. Changing the status of an event without knowledge of the result can lead to hazardous situations.

Clicking on the OK button will set the value, while clicking on the Cancel button will cancel the action.

Clicking on the "Value" section of the "Turn off all events" field will force all of the events to Off status. The user will have to confirm this action.
Clicking on the "Value" section of the "Turn ON all events" field will force all of the events to On status. The user will have to confirm this action.

WARNING!

Before assigning or changing events, be certain that you are familiar with the function of the event whose status you are going to change. Changing the status of an event without knowledge of the result can lead to hazardous situations.

Probe Burnoff Setup

Configurator - Probe Burnoff Setup menu option

When a probe is in a furnace, soot will collect in the end of the probe, which will have a negative effect on the performance of the probe. Burnoffs are used to clean out the built-up carbon by burning it off of the probe.

This menu option allows the user to modify the settings that are associated with the probe burnoff (menu option Burnoff).

Burnoff Time:

This is the duration of the burnoff measured in seconds. SSi recommends a 90 second burnoff, and this will be the default value. However, it can be adjusted by the operator. Clicking on the value will allow the user to change the value.

Configurator - Enter new burnoff value

Click on the OK button to set the new value, or click on the Cancel button to cancel.

Burnoff Recovery Wait Time:

The amount of time allotted to allow the probe measurements to return to a stable, accurate range after the burnoff is complete. This is measured in seconds. The control output is held until this time is elapsed. Clicking on the value will allow the user to change the value.

Burnoff Interval:

This is the amount of time between the beginning of one burnoff and the beginning of the next scheduled burnoff, in minutes. Default time for the instrument is 720 minutes (12 hours). However, the amount of time between burnoffs should be determined by the application.

Burnoff Minimum Millivolts:

The minimum measured millivolt tolerance of the probe required to start a burnoff. Clicking on the value will allow the user to change the value. SSi recommends the millivolt value gets down to 200 mV .

Burnoff Maximum Temperature:

The maximum measured temperature allowed during a burnoff. If the temperature value is exceeded the burnoff will stop. This is done to help maintain the life and the accuracy of your probe. SSi recommends a value of 1800 degrees. Clicking on the value will allow the user to change the value.

Digital IN 4 Assignment:

The value for the digital input 4 assignment. Clicking on the value will allow the user to change the value, which can be either event or start BO.

Burnoff Minimum Millivolts Alarm Setpoint:

The minimum millivolt value that must be reached in order for the "Insufficient mV drop during BO" alarm not to be generated. If the millivolt value does not drop below the minimum, the alarm will be generated.

Burnoff Maximum Temperature Rise Limit:

The maximum number of degrees that the temperature is allowed to increase before the "Excessive TC rise during BO" alarm is generated.

PID Loop Setup

PID is the tuning parameters entered for each Process Variable loop.

Prop Band (0 for On/Off)

Proportional Band determines the response to the current error. The Proportional Band is the percent of the range of the process variable that will produce 100% output and is the inverse of the proportional gain. A low Proportional Band value results in a larger change in output for a given error. Conversely, a high Proportional Band value results in a smaller change in output for a given error. If the Proportional Band is too small, control may oscillate or be otherwise unstable. If the Proportional Band is too large the control action may be too sluggish in response to changes within the system. Note: If the Proportional Band is set to 0.0 , only on/off control is performed. The range 0-3276.0.

Reset

Reset determines the influence of past errors. The Reset, or integral action (expressed in repeats per minute), sums the error between the process variable and setpoint over time and adds this accumulated output to the proportional output. A "proportional only" controller generally operates with steadystate error because some error is required to produce control output. The goal of integral action is to drive the steady-state error to zero and eliminate this droop. The range is $0-327.67$.

Rate

PID Loop Setup	
Loop 1 - Carbon	
Parameter	Value
Prop Band (0 for On/Off)	20.0
Reset	0.10
Rate	0.00
Mode	Dual Reverse
Integral Preset	0
Cycle Time	16
Setpoint Change Limit	OFF
Low Limit	-100
High Limit	100
O set point stops control	yes
IN1 high limit shuts down ctrl	no
IN2 high limit shuts down ctrl	no
IN3 high limit shuts down ctrl	$n o$
PID auto switch	no
Switch Point PID 1->2	99.99
Switch Point PID 2->3	99.99
Setpoint Lower Limit	-99.99
Setpoint Upper Limit	299.99
PV Source	internal
Minimum Fwd On Time (sec)	0.00
Minimum Fwd Off Time (sec)	0.00
Minimum Rev On Time (sec)	0.00
Minimum Rev Off Time (sec)	0.00
Positive Output Accumulator	279217881.1
Negative Output Accumulator	1982970.4
Overshoot Control Logic	$n o$
a	

Rate adjusts the response to future errors. The Rate, or derivative action (expressed in minutes), is used to predict system behavior and has a dampening effect. The more the controller tries to change the process variable the harder, the derivative will work to counter that effort. This dampening effect can be valuable in reducing overshoot but is most often useful when trying to improve control on systems with significant and predicable lag. The range $0-327.67$. NOTE: The rate is not typically used for carbon control.

Mode

This is the mode of the loop. The values are: Dual Reverse, Single Reverse, Dual Direct, or Single Direct. Dual - This has two output relays which can increase and decrease to achieve your SP.
Single - This has one relay which works in only one direction to achieve your SP.
Direct - If the PV - SP equals a positive number and the output would bring the PV down toward setpoint that is direct.
Reverse - If the PV - SP equals a negative number and the output would bring the PV up toward setpoint then that is reverse

Example: If a 12 mA output drives a 0 degree F temperature (PV) UP to a 1200 degree F temperature (SP), this would be REVERSE, and since this would take a SINGLE output from the controller, the Mode for the Temperature Loop is Single Reverse.

Integral Preset

This field provides an offset for the starting point for PID control, also referred to as "Load Line" or "Manual Reset". The range is $\mathbf{- 1 0 0}$ to 100 .

Cycle Time

This field is typically set to the valve travel time multiplied by 1.5 . The range is $\mathbf{0 - 3 0 0}$.

Setpoint Change Limit

This is a smart time feature that allows Process Loop to use PB only without Reset until the Process
Variable drops below the percent output set under this category.
It is used to eliminate overshoot.
The Output percentage selected under this category must be above the normal operating output percentage of the furnace at heat.
The options are: OFF, $80 \%, 70 \%, 60 \%, 50 \%, 40 \%, 30 \%$, or 20%.
Example: If the furnace runs at 40% output at heat for the maximum load, the setpoint change limit should be set to 60%.

Low Limit

This is the low limit for the loop. The range is $\mathbf{- 1 0 0}$ to 100 .

High Limit

This is the high limit for the loop. The range is $\mathbf{- 1 0 0}$ to 100 .

0 Setpoint Stops Control

If the Setpoint is zero, then all outputs are turned off. The option is either Yes or No.

IN1 high limit shuts down ctrl

If input 1's high limit is reached, then all outputs are turned off. The value can either be Yes or No.

IN2 high limit shuts down ctrl

If input 2's high limit is reached, then all outputs are turned off. The value can either be Yes or No.

IN3 high limit shuts down ctrl

If input 3's high limit is reached, then all outputs are turned off. The value can either be Yes or No.

PID Auto Switch

This is the PID auto switch field. The value can either be Yes or No.
PID auto switch is a feature within the instrument that allows multiple PID Loops to be used for various temperature ranges. This feature can be extremely helpful when a single PID Loop is not accurate across a wide temperature range. The most common indication that PID auto switching may improve furnace ability is failure to pass Temperature Uniformity Surveys (TUS). In many examples, a certain PID Loop may prevent under- or over-shoot at normal operating temperatures; but produce unacceptable overshoot at lower temperature.

This feature allows the user to utilize (up tol three distinct loops to obtain more accurate heating curves. In most applications, it is helpful to use the built-in Tuning Assistant feature to determine appropriate PID values. These values can be recorded and manually entered as described below. The chart below demonstrates this feature.

In the example above, proper use of the Tuning Assistant allows the user to find the following optimal PID settings for the following temperature ranges:

- $0-800 \mathrm{~F}$-> PID Group $1(\mathrm{P}=1.0, \mathrm{I}=2.0, \mathrm{D}=3.0)$
- 801-1500F \rightarrow PID Group 2 ($\mathrm{P}=1.3, \mathrm{I}=2.3, \mathrm{D}=2.3$)
- $1501 \mathrm{~F}+$-> PID Group 3 ($\mathrm{P}=1.6, \mathrm{I}=2.6, \mathrm{D}=3.6$)

The following settings must be made via the touch screen:

Parameter	Value
PID Loop Setup -> Loop 1 -> PID Auto Switch	Yes
PID Loop Setup $->$ Loop 1 -> Switch Point PID 1-2	800
PID Loop Setup -> Loop 1 -> Switch Point PID 2-3	1500
Alternate PID Setup -> LP1 set 1 -> Prop Band	1.0
Alternate PID Setup $->$ LP1 set 1 -> Reset	2.0
Alternate PID Setup $->$ LP1 set 1 -> Rate	3.0
Alternate PID Setup -> LP1 set 2 -> Prop Band	1.3
Alternate PID Setup $->$ LP1 set 2 -> Reset	2.3
Alternate PID Setup $->$ LP1 set 2 -> Rate	3.3
Alternate PID Setup $->$ LP1 set 3 -> Prop Band	1.6
Alternate PID Setup $->$ LP1 set 3 -> Reset	2.6
Alternate PID Setup $->$ LP1 set 3 $->$ Rate	3.6

Switch Point PID 1 -> 2

This is the PID Switch Point field. This is used in conjunction with the PID Auto Switching feature. See the PID Auto Switch section for more information. The range is $\mathbf{- 3 0 0}$ to 4000 .

Switch Point PID 2 -> 3

This is the PID Switch Point field. This is used in conjunction with the PID Auto Switching feature. See the PID Auto Switch section for more information. The range is $\mathbf{- 3 0 0}$ to 4000 .

Setpoint Lower Limit

This is the lower limit of the setpoint. The range is $\mathbf{- 1 0 0}$ to 100 .

Setpoint Upper Limit

This is the upper limit for the setpoint. The range is $\mathbf{- 1 0 0}$ to 100 .

PV Source

The options for PV Source are either Internal or External. If External is selected, the loop's PV must be written by an external source. Selecting Internal will continue normal operation where the source is determined by the PID loop and the PV type.

Minimum Forward On Time (sec)

This setting specifies the minimum number of seconds for which output must be positive (heating) before the control is turned off. The maximum value for this setting is 100 .

Minimum Forward Off Time (sec)

This setting specifies the minimum number of seconds for which the control must be off after heat is applied. The maximum value for this setting is 100 .

Minimum Reverse On Time (sec)

This setting specifies the minimum number of seconds for which output must be negative (cooling) before the control is turned off. The maximum value for this setting is 100 .

Minimum Reverse Off Time (sec)

This setting specifies the minimum number of seconds for which the control must be off after cooling is applied. The maximum value for this setting is 100 .

Positive Output Accumulator

The Positive Output Accumulator is the sum of the positive outputs (given in percentages up to one decimal place) measured each second. Therefore, if the following outputs are recorded over five seconds:

Output (in \%)	Second Passed
100.0	1
99.0	2
99.0	3
98.0	4
97.0	5

Then the value for the Positive Output Accumulator after five seconds will be $1100.0+99.0+99.0+98.0+$ 97.0) or 493.0.

To reset the Positive Output Accumulator, simply click Edit while the Positive Output Accumulator is highlighted and confirm the reset. This will cause the Positive Output Accumulator to be reset to zero and start accumulating values again from that point.

Negative Output Accumulator

The Negative Output Accumulator is the sum of the negative outputs Igiven in percentages up to one decimal place) measured each second. The sum of the negative values is expressed as a positive value. This means that, if an output of -50% is recorded after one second, a value of 50 will be added to the Negative Output Accumulator. Similarly, if the following outputs are recorded over five seconds:

Output (in \%)	Seconds Passed
-20.0	1
-20.0	2
-21.0	3
-21.0	4
-22.0	5

Then the value for the Negative Output Accumulator after five seconds will be $20.0+20.0+21.0+21.0+$ 22.0) or 104.

To reset the Negative Output Accumulator, simply click Edit while the Negative Output Accumulator is highlighted and confirm the reset. This will cause the Negative Output Accumulator to be reset to zero and start accumulating values again from that point.

Overshoot Control Logic (No/Yes)

Overshoot control logic is activated when a large setpoint change occurs. If the logic is active and a large setpoint occurs, it sets a working setpoint at an appropriate distance from the desired setpoint to prevent the PV from overshooting the desired final setpoint. When the PV reaches or crosses this working setpoint, then the logic exponentially ramps the working setpoint to the desired final setpoint.

Output rate change limit, \%/sec

This option causes the 9125 controller to limit the rate at which the output changes in the furnace. For example, if the output rate change limit is 5% per second, the controller will increase the output at a rate no greater than 5% each second until the output reaches the level needed to reach setpoint. This limit can be useful in cases where (for example) a heating element should not (for operational and safety reasons) heat up to a high output immediately. If the output needs to reach 100% to achieve setpoint, the Output Rate Change Limit will apply the output incrementally, rather than allowing the output to climb to 100% as soon as the heat is turned on.

PID Switch Variable

This is the parameter that triggers the PID switch. The options are Process variable and Setpoint. Note that PID Auto Switch must be set to Yes in order to use PID Switching.

Port Setup

```
Port Setup
```

Parameter	Value
Host 232 Baud	19200
Host 232 Mode	Modbus/DF1 ma...
Host $485(3,4)$ Baud	19200
Host $485(3,4)$ Mode	Modbus
Host 485 Address	1
Slave 1 $(5,6)$ Baud	19200
Slave 1 $(5,6)$ Mode	Modbus
Slave 1 $(5,6)$ Bits	8, None, 1
Slave 2 $(22,23)$ Baud	19200
Slave 2 $(22,23)$ Mode	Modbus
Slave 2 $(22,23)$ Bits	8, None, 1
PLC Type	DF1 Slik
Host 232-2 Baud	19200
Host 232-2 Mode	Modbus

Host 232 Baud
This will set the baud rate for RS-232 communications. The list of options is:

1200	14400	57600
2400	19200	76800
4800	28800	115200
9600	38400	

Host 232 Mode
This will set the mode rate for RS-232 communications. This list of options is:
Modbus Cal term Modbus/DF1 Master
Host $485(3,4)$ Baud
This will set the baud rate for RS-485 communications. The list of options is:

1200	14400	57600
2400	19200	76800
4800	28800	115200
9600	38400	

Host 485 (3,4) Mode
This is the mode for RS-485 communications. It is fixed on Modbus.

Host 485 Address

This will set the address for RS-485 communications. The range is $1 \mathbf{- 2 4 7}$.
Slave $1(5,6)$ Baud
This will set the baud rate for Slave 1 communications. The list of options is:

1200	14400	57600
2400	19200	76800
4800	28800	115200
9600	38400	

Slave $1(5,6)$ Mode
This will set the mode for Slave 1 communications. The list of options is:
Modbus Master
Yokogawa
Modbus Host
Slave 1 (5,6) Bits
This will set the data bits, parity, and stop bits (in that order). The list of options is:
8, none, 1
8, odd, 1
8, even, 1
8, none, 2

Slave 2 Baud

This will set the baud rate for Slave 2 communications. The list of options is:

1200	14400	57600
2400	19200	76800
4800	28800	115200
9600	38400	

Slave 2 Mode

This will set the mode for Slave 2 communications. This list of options is:
MMI
Modbus
N/A
SSi Analog Input Board
Yokogawa
Slave $1(5,6)$ Bits
This will set the data bits, parity, and stop bits (in that order). The list of options is:
8, none, 1
8, odd, 1
8, even, 1
8 , none, 2

PLC Type

This value defines the type of PLC being used. The options are: Micrologix Modbus, MCMmodule Modbus, DF1 PLC5, DF1 Slik, Passive.

Host 232-2 Baud
This will set the baud rate for RS-232 communications. The list of options is:

1200	14400	57600
2400	19200	76800
4800	28800	115200

Series 9125 Operations Manual

Host 232-2 Mode
This will set the mode for RS-232 communications. The list of options is:
Modbus Cal term Televac

Slave Instrument Setup

** All devices on the same slave port must utilize the same protocol
** An address of zero (0) will disable the instrument** Some controllers (AC20 for example) can provide dual functions (atmosphere and events) and must have the same address assigned for both.

This screen will allow the user to configure up to eighteen (18) slave instruments through the 9125 controller (7 are reserved).

Clicking on the "Value" field for any instrument will allow the user to select the slave instrument.

Instrument
This value will allow the user to select the slave instrument type.

List of Instruments

The following is the list of instruments available as slave instruments:

SSi AC20
[A]Yokogawa 750
[A]Honeywell UDC3300
[A]Dualpro LP1 Modbus
[A]Dualpro LP2 Modbus
[A]Dualpro LP1 MMI
[A]Dualpro LP2 MMI
[A]Eurotherm 2404
[A]Eurotherm 2500
[A]CarbPro v3.5
[A]CarbPro v3.0
CarbPC
[A]9200 LP1
IR Base
MGA

Honeywell UDC3200
SSi 7EK
[T]Yokogawa 750
[T]Honeywell UDC3300
[T]Dualpro LP1 Modbus
[T]Dualpro LP2 Modbus
[T]Dualpro LP1 MMI
[T]Dualpro LP2 MMI
[T]Eurotherm 2404
[T]Eurotherm 2500
Unipro v3.5
Unipro v3.0
[T]Carbpro v3.5 Slave
[T]Carbpro v3.0 Slave
10Pro

Dualpro IN C
[T]9200 LP1
[T]9200 LP2
[T]9200 LP3
9100 LP2
Eurotherm 2704 LP1
Eurotherm 2704 LP2
Eurotherm 2704 LP3
VC Base 1
VC Base 2
VC Base 3
VC Base 4
AIPC
SSi 7SL
AEC Flow Board

UMC800 LP1	SSi Dual Motor Board	PLC DF1
SSi Quad AO1	SSi Smart AIB 3	SLC DF1
SSi Quad AO2	O2 Block	User 1
SSi Quad AO3	Waukee Valvetronic+	User 2
SSi Quad A04	SSi SPPP	User 3
Yokogawa UT350	EL-Flow	User 4
Yokogawa 750 Lp 2	SSi AC E	User 5
Yokogawa UP350	Yokogawa 750E	User 6
Honeywell DCP551	Mod Mux	User 7
Ascon 08	Dualpro E Modbus	User 8
SSi X5	Dualpro E MMI	User 9
SSi M4L	Carbpro E v3.5	User 10
SSi X5/Timer	Carbpro E v3.0	User 11
SSi SPUD	Eurotherm 2500	User 12
SSi IB3	SSi 8-8	User 13
SSi H2 Cell	SSi 9200 E	User 14
Flow Meter Short	Micrologix PLC	User 15
SSi O2 Remote	MCM Module	User 16

Some instruments may not be shown in the list of instruments. User Instruments 1 through 16 are used to set up a non-listed instrument as a slave instrument using the Generic Instrument Setups menu.

Address

This value allows the user to select the address that corresponds with the controller selected, with a range of 0 to 249 .

Port

The options for this field are: Slave 1, Slave 2, RS-232, IP Address 1, IP Address 2, IP Address 3, IP Address 4, Passive, or Slave 3/RS-232.
Slave 1 - terminals $5(-), 6(+)$
Slave 2 - terminals 22(+), 23(-)
RS-232

Zone Assignments

The zone assignment feature allows the Series 9125 to change set points on all instruments of a multi-zone furnace. The Series 9125 has up to five temperature and atmosphere zone assignments available (Zone Assignment 1 - Zone Assignment 5). Typically, the first zone is configured to the atmosphere or temperature instrument. That is the master set point that will be

Zone Assignments	
Assignment 1	v
Parameter	Value
Temp Instrument	Loop 1
Temp Zone Number	0
Default Zone Offset, temp	0

When using the multi-zone offset feature, the temperature controller assigned as instruments 1 and 2 should be in zones that will not be offset.

Atm Instrument

This will allow the user to set the atmosphere instrument for the zone assignment. The options are

Loop 1	Instrument 5	Instrument 12	Instrument 19
Loop 2	Instrument 6	Instrument 13	Instrument 20
Loop 3	Instrument 7	Instrument 14	Instrument 21
Instrument 1	Instrument 8	Instrument 15	Instrument 22
Instrument 2	Instrument 9	Instrument 16	Instrument 23
Instrument 3	Instrument 10	Instrument 17	Instrument 24
Instrument 4	Instrument 11	Instrument 18	Instrument 25

Atm Zone Number

This option will allow the user to set the zone number for the assignment. The range is $0-5$.

Atm Zone Offset

This option will allow the user to enter an offset for the assignment. The range is $\mathbf{- 4 0 0 0 - 4 0 0 0}$.

Temp Instrument

This will allow the user to set the temperature instrument for the zone assignment. The options are:

Loop 1	Instrument 5	Instrument 12	Instrument 19
Loop 2	Instrument 6	Instrument 13	Instrument 20
Loop 3	Instrument 7	Instrument 14	Instrument 21
Instrument 1	Instrument 8	Instrument 15	Instrument 22
Instrument 2	Instrument 9	Instrument 16	Instrument 23
Instrument 3	Instrument 10	Instrument 17	Instrument 24
Instrument 4	Instrument 11	Instrument 18	Instrument 25

Temp Zone Number

This option will allow the user to set the zone number for the assignment. The range is $0-5$.

Temp Zone Offset

This option will allow the user to enter an offset for the assignment. The range is $\mathbf{- 4 0 0 0 - 4 0 0 0}$.

Furnace Setup

Furnace Setup	
Parameter	Value
PVT Type	\% Carbon
Temperature Mode	Loop 1
Loop 1 Instrument	Loop 2
Loop 2 Instrument	internal
Event Instrument	Instrument 2
Quench Instrument	7
End of quench event	6
Quench speed event	0
Quench run event	$6 / 11 / 2014$ 12:30:47 PM
Date and Time	90
Default Hold Time	0
Deviation Alarm Delay	Batch 1 r 1 !
Furnace Name	Temperature 1
PV1 Name	Temperature 2
PV2 Name	Temperature 3
PV3 Name	yes
Clear Events, end of recipe	On rerine nnrnde
Start Oıınrh	

The Furnace Setup menu option is an administrative access only option. Do not make any adjustments on the screen without first contacting Super Systems, Inc. at (513) 772-0060. Note for controllers with Cascade control: When in cascade mode, the $9 \times x x$ treats loop 2 as the furnace loop and loop 3 as the load loop. It feeds the output of the load loop into the set point of the furnace loop.

PVT Type

There are nine PVT choices for the 9125:

\%Carbon	Cascade
Dew Point	\% Carbon + Redundant TC
Millivolts	Dew Point + Redundant TC
Multi-loop	Millivolts + Redundant TC
\% Carbon + Dual Temp	
\%Carbon: Process variable will calculate for carbon	
potential along with a temperature loop. Loop 1 is	

based off of Input 1 (terminals 31, 32 probe sensor millivolts) and Input 2 (terminals 29,30 probe TC). These two inputs together constitute loop 1 . Loop 2 comes from Input 3 (terminals 27, 28) which is temperature control.

Cascade: Three loops of temperature control work together in a cascade setting.
Dew Point: Control will be for dew point along with a temperature loop. Loop 1 is based off of Input 1 (terminals 31, 32 probe sensor millivolts) and Input 2 (terminals 29,30 probe TC). These two inputs together constitute loop 1. Loop 2 comes from Input 3 (terminals 27, 28) which is temperature control.
\%Carbon + Redundant TC: This functions the same way as the \%Carbon option with an additional thermocouple for Loop 3. The two thermocouples are used to control carbon, and the operator can choose the setting that will be used.

Millivolts: Control is based on what the millivolt reading is and also reads temperature.
Dew Point + Redundant TC: This functions the same way as the Dew Point option with an additional thermocouple for Loop 3. The two thermocouples are used to control dew point, and the operator can choose the setting that will be used.

Multiloop: Three loops of control can be assigned as selected.
Millivolts + Redundant TC: Control is based off of the millivolt reading and also reads temperature. Loop 3 is another thermocouple.
\%Carbon + Dual Temp: This functions similarly to \%Carbon. Input 2 is the control TC. IT is not used to calculate carbon potential with input one and to control furnace temperature. Input 3 in the third loop and is another TC.

IMPORTANT: If the 9125 is controlling \% Carbon or Dew Point, control will be disabled if either or both of the following are true:

- Millivolts registered by probe are below 500 mV or above 1300 mV .
- Temperature registered by probe is below $900^{\circ} \mathrm{F}$ or above $2100^{\circ} \mathrm{F}$.

Temperature Mode

This allows the operator to choose either degree Fahrenheit or Celsius for the temperature. The options are ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$. Pressing OK will set the choice.

Loop 1 Instrument

Internal Loop 1 (typical) Instrument 5 Internal Loop 2 Instrument 6 Internal Loop $3 \quad$ Instrument 7 Instrument $1 \quad$ Instrument 8 Instrument $2 \quad$ Instrument 9 Instrument $3 \quad$ Instrument 10 Instrument $4 \quad$ Instrument 11

Instrument 12 Instrument 13 Instrument 14 Instrument 15 Instrument 16 Instrument 17 Instrument 18

Instrument 19
Instrument 20
Instrument 21
Instrument 22
Instrument 23
Instrument 24
Instrument 25

Loop 2 Instrument

Internal Loop 1	Instrument 5	Instrument 12	Instrument 19
Internal Loop 2	(typical) Instrument 6	Instrument 13	Instrument 20
Internal Loop 3	Instrument 7	Instrument 14	Instrument 21
Instrument 1	Instrument 8	Instrument 15	Instrument 22
Instrument 2	Instrument 9	Instrument 16	Instrument 23
Instrument 3	Instrument 10	Instrument 17	Instrument 24
Instrument 4	Instrument 11	Instrument 18	Instrument 25

Event Instrument

Allows for a slave instrument (or internal) to be the defined event control device. The types of instruments are: Internal, Instrument 1 - Instrument 25. Internal is typical.

Quench Instrument

Allows for slave instrument (or internal) to be the defined quench control device. The types of instruments are: Internal Loop 1 - Internal Loop 3, Instrument 1 - Instrument 25.

Date and Time

This value is the current date and time on the 9125 controller only (not the local computer or the touch screen, if applicable). The time on the controller is displayed in the 24 -hour format, so $8=8 \mathrm{AM}$, and $14=2$ PM. Note: The date and time of the touch screen can be changed lif necessaryl by selecting the date and time in the lower right corner on the touch screen, once the screen software has been shut down and the Windows ${ }^{\text {TM }}$ desktop is visible. Then, at the CE screen the date and time can be changed by double taping the time in the bottom right corner and setting it, then select "apply". For this to take effect the screen needs to be rebooted; on the older TPC 642 displays the registry needs to be saved under TPC Configuration icon, the Misc Tab and then reboot the touch screen. The date and time that is recorded on the flash card land therefore the datalog datal is the date and time of the Advantech display, not the controller.

Cascade Inhibit

Note: This field is only applicable if the controller is in Cascade mode. This will turn cascade control on or off. When inhibit = enabled, the 9125 functions as a multi-loop controller with three control loops. The options are: enabled or disabled.

PV Difference Cutback

Note: This field is only applicable if the controller is in Cascade Mode. This is used with the Cascade Lower Range EOPV and Cascade Upper Range EOPV to limit the absolute \% output of the furnace loop. This will turn the PV difference cutback feature on or off. The options are: enabled or disabled.

Cascade Lower Range EOPV

Note: This field is only applicable if the controller is in Cascade Mode. This is the cascade lower range end of PV difference. This is used with the PV Difference Cutback and Cascade Upper Range EOPV to limit the absolute \% output of the furnace loop. Between the lower range EPOV and the upper range EOPV, there is a linear interpolation from 0 to the loop 2 output maximum (usually 100%) that determines the maximum \% output for the furnace loop. The range is -300 to 10000 .

Cascade Upper Range EOPV

Note: This field is only applicable if the controller is in Cascade Mode. This is the cascade upper range end of PV difference. This is used with the Cascade Lower Range EOPV and PV Difference Cutback to limit the absolute \% output of the furnace loop. Between the lower range EPOV and the upper range EOPV, there is a linear interpolation from 0 to the loop 2 output maximum (usually 100%) that determines the maximum \% output for the furnace loop. The range is -300 to 10000 .

Example: With the Lower EOPV set to 10 and the Upper EOPV set to 110 , if the load PV is 1700 and the furnace PV is 1710, the full 100% output is available. If the load PV is 1600 and the furnace PV is 1710, the furnace output will not go above 0%. If the load PV is 1655 and the furnace PV is 1710 , the maximum output for the furnace loop will be limited to 55\%: (1710-1655)/(110-10) * (1.0).

Furnace Name

This will allow the user to give the controller a display name.

PV1 Name

This will allow the user to give the first process variable a display name.

PV2 Name

This will allow the user to give the second process variable a display name

PV3 Name

This will allow the user to give the third process variable a display name

Slave Event Boards

This is the number of slaved boards connected to the 9125 . Examples of compatible devices would be a 9015 event module or digital I/O boards connected via an SSi SR box.

CO Factor

Displays the current CO Factor. When selected, this setting allows you to set the current CO Factor. The range is $0-1000$. NOTE: A CO Factor of 200 represents approximately 20.0% CO in the furnace.

H Factor

Displays the current H Factor. When selected, this setting allows you to set the current H Factor. The range is $0-1000$. NOTE: An H Factor of 400 represents approximately $40.0 \% \mathrm{H}_{2}$ in the furnace.

Alarm Setup

Alarm Setup		\vee
Alarm 2		Value
Parameter	2250	
Setpoint	PV1 proc high	
Alarm Type	5	
Hysteresis	disabled	
Smart Alarm	0	
ON Delay Time (sec)	yes	
0SP blocks alarm	yes	
BO/lmpedance inhibits alarm	Input 1	
Inhibit source	yes	
Disable on open input		

The 9125 controller can be configured to use three (3) different alarms, and a Thermocouple Check. Each of the alarms consists of an alarm setpoint, alarm type, alarm hysteresis, smart alarm, ON delay time, 0 SP blocks alarm value, Burnoff/Impedance inhibits alarm, Inhibit source, and disable on open input. The alarms come from the factory with a default configuration dependent on the application but also can be modified prior to shipment to your facility or in the field by a supervisor. See the section Appendix B - Factory Default Settings for the 9125 Controller for more information on factory default settings for the alarms.

Setpoint

This value is the setpoint for the alarm. Clicking on this value will display an input box from which the user can select a new value. The range is from -9999 to 9999.

Alarm Type

This value is the type of alarms used. Clicking on this value will display an input box with two (2) drop-down lists from which the user can select a new value.

The values in the first (top) list box are:
PV 1 Value
PV 2 Value
PV 3 Value
N/A
Input 1 Value
Input 2 Value
Input 3 Value
P01 Value
PO2 Value
PO3 Value
The values in the second (bottom) list box are:
Process High
Process Low
Out of Band
In Band
Outside Deviation
Within Deviation
Band alarm works by looking at a value above and below setpoint. Deviation alarm works by looking at a value either above or below (based upon the setpoint value the user has entered). A few examples would probably be best to explain how to set these up properly.

Hysteresis

This value is the Hysteresis value. The Hysteresis is a set number that works with the alarm to help control a motor or pump longer to reach a set amount to come back into band before it will shut off motor or pump.

Example: Using quench oil as an example, suppose the $S P$ is $200^{\circ} \mathrm{F}$. The alarm is set as a deviation of +10 ${ }^{\circ} \mathrm{F}$. At $210^{\circ} \mathrm{F}$, the alarm is active and the pump will run to cool the oil. With a hysteresis of $8{ }^{\circ} \mathrm{F}$, the alarm and pump will turn off at $202^{\circ} \mathrm{F}$. It will turn back on when it is $10^{\circ} \mathrm{F}$ above setpoint. If the setpoint is still $200^{\circ} \mathrm{F}$, then at $210^{\circ} \mathrm{F}$, it will turn on again.

Clicking on this value will display an input box from which the user can select a new value. The range is from 0 to 9999.

Smart Alarm

This value is a display of the Smart Alarm status. A smart alarm is an alarm that works with a Process Variable (PV), and, when enabled, it will not be active until the PV is within band of the setpoint. The alarm sounding - if active - will be disabled until within the SP band. When it is in band, the alarm will go active unless on delay time is set.

Example: If the SP is $1700^{\circ} \mathrm{F}$ and the band is $10^{\circ} \mathrm{F}$, the alarm will not be active until the PV reaches 1690 ${ }^{\circ} \mathrm{F}$. The value can be either disabled or enabled.

ON Delay Time

This value is the ON Delay Time. Clicking on this value will display an input box from which the user can select a new value. The range is from 0 to 9999.

0 SP Blocks Alarm

This value will allow a 0 setpoint to block an alarm. The options are either no or yes.

BO/Impedance Inhibits Alarm

This option will allow the user to specify if a burnoff or impedance test will keep the alarm from sounding. The options are either no or yes.

Inhibit Source

Alarms can be inhibited in order to prevent false or unnecessary alarm notifications. The Inhibit Source option will allow the user to set the source of the inhibit signal. The options are: None, Input 1 - Input 4, Soak timer inactive (The alarm will not happen if the furnace is in a soak if this option is selected), and. Input 6 - Input 15.

Disable on Open Input

An alarm can be disabled when an input the open in order to avoid false or unnecessary alarms. This option will allow the user to specify if the alarm is disabled when the input is open. The options are either no or yes. This option is valid only for alarms with input sources.

Alarm Setup	
Thermocouple Check	
Parameter	Value
Source 1	not used
Source 2	notused
Source 3	not used
Tolerance Band	0
Source 2 Offset	0
Source 3 Offset	0

Thermocouple Check

This menu option allows the values between up to three thermocouples to be compared to one another. If the thermocouples go out of band, it is possible to set up an alarm that will alert the operators of this error.

Source 1 This assigns the first thermocouple that will be compared. The options are:
Not used
Instrument 1-27
n/a
Input 3
Input 2
Input 1
Source 2 This assigns the second thermocouple that will be compared. The options are:

Not used

Instrument 1-27

n/a

Input 3
Input 2
Input1
Source 3 This assigns the third thermocouple that will be compared. The options are:
Not used
Instrument 1-27
n/a
Input 3
Input 2
Input1
Tolerance Band This allows the operator to set the tolerance band between the thermocouples being compared. The range is -9999 to 9999.

Source 2 Offset This allows for an offset to be assigned to the second thermocouple and taken into account when the comparison between values is made. The range is $\mathbf{- 9 9 9 9}$ to 9999 .

Source 3 Offset This allows for an offset to be assigned to the third thermocouple and taken into account when the comparison between values is made. The range is $\mathbf{- 9 9 9 9}$ to 9999 .

Relay Assignments

The 9125 controller has the option of using eight relay outputs. All of the relays have a positive common terminal and independent negative terminals. All of the relays are configured in a normally closed position except relay number eight, which has both a normally closed (NC) and a normally open (NO) terminal. These relays can be configured to work with events, alarms, loops, burnoff and alarm combinations.

Relay Output Terminals

Relay Output 1 - terminals 7 and 8
Relay Output 2 - terminals 7 and 9
Relay Output 3 - terminals 7 and 10
Relay Output 4 - terminals 7 and 11
Relay Output 5 - terminals 7 and 12
Relay Output 6 - terminals 7 and 13
Relay Output 7 - terminals 7 and 14
Relay Output 8 - terminals 7 and 15 NC
Relay Output 8 - terminals 7 and 16 NO

Relay Assignments

Parameter	Value
Relay 1	loop 2 fwd
Relay 2	loop 1 fwd
Relay 3	loop 1 rev
Relay 4	burn off
Relay 5	alarm 1
Relay 6	alarm 2
Relay 7	event 0
Relay 8	alarm 3
Module 1 Inputs	not assigned
Module 1 Relay 1	loop 1 fwd
Module 1 Relay 2	loop 1 fwd
Module 1 Relay 3	loop 1 fwd
Module 1 Relay 4	loop 1 fwd
Module 1 Relay 5	loop 1 fwd
Module 1 Relay 6	loop 1 fwd
Module 1 Relay 7	loop 1 fwd
Module 1 Relay 8	loop 1 fwd
Module 2 Inputs	not assigned

Relay Output Choices

Loop 1 Fwd
Loop 1 Rev
Loop 2 Fwd
Loop 2 Rev
Loop 3 Fwd
Loop 3 Rev
Alarm 1 - 3

Event 0-15
Burnoff
N1 Relay SP A
IN1 Relay SP B
IN1 Relay SP C
IN2 Relay SP A
IN2 Relay SP B

IN2 Relay SP C
IN3 Relay SP A
IN3 Relay SP B
IN3 Relay SP C
IR Sample Solenoid
Alarm Combination
N/A

The "Alarm Combination" option will allow the user to select the specific combination of alarms to use.
The options are: Alarm 1, Alarm 2, Alarm 3, Invert Relay State for Alarms, and one of two options: T/C Check (Thermocouple Check), or EOQ (End of Quench)..

Relay Setpoints

Configurator - Relay Setpoints menu option
This option is typically used for vacuum applications.
The 9125 controller offers the user three pairs of configurable setpoints for each input. Each pair of setpoints allows the user to configure both ON and OFF trigger points. The values entered are in engineering units based on input configuration.

The relay setpoints can only be used once the relays are assigned as such in the Relay Assignments menu option.

The range is $\mathbf{- 3 2 7 6 8}$ to 32767 .

Analog Input Setup

The 9125 controller has three analog inputs. Each of the inputs comes with a factory default configuration dependent on the application. It can be modified prior to shipment to your facility or in the field by a technician or qualified/trained person with the proper security code. Before connecting your input source to the terminals, please verify that the input type is set up correctly. If the Input Type is not correct, do not connect the input source to the terminals, as damage can occur. Please consult SSi by calling (513) 772-0060 before making any changes.

Analog Input Terminals

Analog Input 1 - terminals 31 and 32
Analog Input 2 - terminals 29 and 30
Analog Input 3 - terminals 27 and 28

Analog Input Setup			
Input 1			
Parameter	Value		
Input Type	K		
Filter Time	2		
Initial Scale	0		
Full Scale	2550		
Decimal Point Location	0		
Open Input	up scale		
Input Offset	0		
Trip Point 1 Setpoint	0		
Trip Point 1 Force Value	0		
Trip Point 1 Direction	input above setpoint		
Trip Point 2 Setpoint	0		
Trip Point 2 Force Value	0		
Trip Point 2 Direction	input above setpoint		
High Input Limit Setpoint	9999		
High Input Limit Hysteresis	1		
Use Input Correction Curve	no		

Input Type

The thermocouple type for most applications can be modified depending on your specific needs. Note:
Some of the inputs DO NOT allow the user to modify the Input type. To change the Input type, first select which input you want to change by selecting it in the pull-down menu just below the main menu list.
Clicking on the Value will display an input box, and then you can use the pull-down menu to select the desired parameter. Once selected, click OK and the displayed Input type under Value will be the current type. The following is a list of the options:

B	S	12.5 volts ${ }^{* *}$
C	T	781.25 mv
E	2.5 volts	195.3125 mV
J	1.25 volts	
K	78.125 mV	
N	19.53125 mV	
NNM	$4-20 \mathrm{~mA}^{* *}$	
R	25 volts $* *$	

** - When the specified input type is selected, a jumper located inside the case will need to be placed on that specific input for reading this selection. If jumper is not placed on input, then damage could occur to the board.

Filter time

The filter time is a factory applied averaging tool used to help maintain steady control in high EMI environments. The filter time should not be adjusted with consulting SSI. Clicking on this value will display an input box from which the user can select a new value. The range is 0 to 32767.

Initial Scale

This is the initial scale value. This could also be referred to as the starting value. For example, the initial value is the value when 0 volts is on the selected input; or on a $4-20 \mathrm{~mA}$ input, it would be the value at the selected input of 4 mA . Clicking on this value will display an input box from which the user can select a new value. The range is -32768 to 32767 .

Full scale

This is the full scale value. Clicking on this value will display an input box from which the user can select a new value. The range is $\mathbf{- 3 2 7 6 8}$ to 32767.

Decimal Point Location

This is the decimal point location value. This will affect the PV value and the location of the decimal when it is displayed. Clicking on this value will display an input box from which the user can select a new value. The range is 0 to 4 .

Open Input
This is the open TC value. Clicking on this value will toggle between up scale, down scale, one trip point, and two trip points.

Input Offset

The input offset value is algebraically added to the input value to adjust the input curve on read-out. The range is $\mathbf{- 5 0 0 0}$ to 5000 .

TRIP POINT EXPLANATION

Setting a trip point will force the value that the controller uses for calculations to a certain value as assigned by the operator. Once the Trip Point Setpoint is reached, the controller will begin reading the value as the Trip Point Force Value, regardless of what the actual value is inside the furnace. The Trip Point Direction allows the operator to choose whether the controller will alter its reading when the trip point is either above or below the setpoint.

Trip Point 1 Setpoint

This is the trip point 1 setpoint value in ${ }^{\circ}$ F. The trip point is used as a way to ensure that the probe is still working properly and that there is not a problem with the furnace that could ruin the load. If the probe takes a measurement in conflict with the trip point, the reading will automatically be forced to the Trip Point Force Value. This will cause the system to set off an alarm so that the operator will be aware there is a problem. The range is -32768 to 32768 .

Trip Point 1 Force Value

This is the trip point 1 force value. This value is used when the probe begins reading values in conflict with the trip point. Although the probe will still be taking measurements, the 9125 controller will use the force value as the input so that an alarm will be set off. The range is -32768 to 32768 .

Trip Point 1 Direction

This is the trip point 1 direction. The options are: input above setpoint or input below setpoint. If input above setpoint is chosen, then the force value will be used when the probe begins measuring above the trip point setpoint. If input below setpoint is chosen, then the force value will be used when the probe begins measuring below the trip point setpoint.

Trip Point 2 Setpoint

This is the trip point 2 setpoint value. The range is -32768 to 32768 .

Trip Point 2 Force Value

This is the trip point 2 force value. The range is -32768 to 32768 .

Trip Point 2 Direction

This is the trip point 2 direction. The options are: input above setpoint or input below setpoint.

High Input Limit Setpoint

This is the setpoint for the high input limit. The setpoint cannot be assigned any value above this. The range is $\mathbf{- 3 2 7 6 8}$ to 32768 .

High Input Limit Hysteresis

This is the hysteresis for the high input limit. The hysteresis cannot be assigned any value above this. The range is $\mathbf{- 3 2 7 6 8}$ to 32768 .

Use Input Correction Curve

This option will allow the user to use a correction curve on the input. The options are No or Yes.

Analog Output Setup

Analog Output Setup		\checkmark
Output 1		
Parameter	Value	
Assignment	loop 1 inc	
Offset	0	
Range	200	
Current Selection	$4-20 \mathrm{~mA}$	

The 9125 controller has the option of six analog outputs. The outputs are ranged for a 4-20 milliamp signal or a $0-20$ milliamp signal. Each output comes with a factory default configuration dependent on the application. Each output can be modified prior to shipment to your facility or in the field by a supervisor.

Analog Output Terminals

Analog output 1 - terminals 24 and 25
Analog output 2 - terminals 25 and 26
Analog outputs 3, 4, 5, and 6 are enabled by use of an SSi QuadDAC board that connects to two RS485 terminals on the 9125 (terminals 5 and 6 for Slave 1, terminals 22 and 23 for Slave 2). Use the Port Setup menu to configure communication parameters.

Assignment

The analog output assignment can be modified depending on your system requirements. To change the Assignment first select which analog output you want to change by selecting it in the pull-down menu just below the main menu. Clicking on this value will display an input box, and then you can use the pull-down menu to select the desired parameter. Once selected, click OK and the displayed assignment under Value will be the current assignment type. The following is a list of the options:
PV 1 retrans Not assigned
Loop 1 inc 02 offset log
Loop 1 dec SP1 retrans
Loop 1 combo SP2 retrans
PV 2 retrans SP3 retrans
Loop 2 inc
Valve 1 SP
Loop 2 dec
Loop 3 combo
PV 3 retrans
Valve 2 SP
Valve 3 SP
Loop 3 inc
Valve 4 SP
Loop 3 dec
Loop 3 combo
Input 1 retrans
Input 2 retrans
Input 3 retrans
Combo example for carbon: 4-12 mA Air
12-20 mA Gas

Offset

This is the starting point, the Process Variable value at which you get 4 milliamps if the output is set up as $4-20 \mathrm{~mA}$ (or 0 milliamps if output is set up as $0-20 \mathrm{~mA}$). Clicking on this value will display an input box from which the user can select a new value. The range is -32768 to 32767 .

Range

This is a Process Variable value between 4 and 20 milliamps (or 0 and 20 milliamps, depending on setup). . Clicking on this value will display an input box from which the user can select a new value. The range is 32768 to 32767.
Note - The range, although not displayed with a decimal point, contains a decimal point that is dependent on the process variable selected. For example, if the offset is 20 mV for 4 mA , and you want 100 mV to be 20 $m A$, then your range should be 80 . If the process variable is temperature, then the range will be 80 , since temperature PVs do not have a decimal. If the PV is \% Carbon, then the range will need to include the two decimal points for \% Carbon. So, a range of 80 will be entered as 8000 . See below for more examples.

Current Selection

Provides the option of $4-20 \mathrm{~mA}$ or $0-20 \mathrm{~mA}$ control. Clicking on this value will display an input box with a drop-down list from which the user can select either of the two values listed above.

```
Offset and Range when assigned to a control loop
Inc: 0 = 4mA, 100=20mA
Dec:0=4mA, -100=20mA
Example: if 4-20 mA = 800 mV - 1200 mV
    Offset = 800 (starting point)
    Range = 400
```


Passcode and Alarm

There are three levels of menus in the 9125 controller Operator, Supervisor, and Administrator

Operator Level

These are functions typically handled by a furnace operator and do not require a passcode. When an operator is logged in, the lock on the toolbar will be blue -

Supervisor Level

These are functions typically used by a supervisor and require a level 1 passcode. When a supervisor is logged in, the lock on the toolbar will be gold - To change the level 1 passcode,

Passcode and Alarm	
Parameter	Value
Level 1 Code	1
Level 2 Code	2
Web Level 1 Code	111
Web Level 2 Code	222
Web Change Enable	1
Alarm 1	normally closed
Alarm 2	normally closed
Alarm 3	normally open

Administrator

These are functions typically used by an administrator and require a level 2 passcode. When an administrator is logged in, the lock on the toolbar will be green - To change the level 2 passcode or the web level 2 passcode, click on the "Level 2 Code" value (range is $\mathbf{- 3 2 7 6 8}$ to 32767) or the "Web Level 2 Code" value (range is 0 to 9999) and an input box will be displayed where the user can select a new value.

Web Change Enable

This option will determine if changes can be made over the 9125 's web page. Clicking on this value will toggle between a 1 (Yes) and a 0 (No).

Alarm 1 - Alarm 3

The user can choose either normally open or normally closed.

IP Address

Edit IP								
IP	\|192	$\hat{*}$	168	$\stackrel{1}{*}$	1	$\stackrel{\rightharpoonup}{*}$	229	$\stackrel{\rightharpoonup}{*}$
Mask	255	$\stackrel{\rightharpoonup}{*}$	254	$\stackrel{\rightharpoonup}{*}$	255	$\stackrel{\rightharpoonup}{*}$	0	$\hat{\sim}$
Gateway	192	$\stackrel{\rightharpoonup}{*}$	168	$\stackrel{\sim}{*}$	1	$\stackrel{\text { - }}{ }$	1	$\stackrel{\rightharpoonup}{*}$
					OK			

The IP Address menu item is a display of the current IP Address, IP Address Mask, and the IP Address Gateway of the 9125 controller. Please consult your Systems Administrator before changing this value as it can affect communications to the 9125 controller, communications between the controller and the PLC, communications between the controller and other devices on the network, or to data collection systems. This page allows the user to change the IP Address, IP Address Mask, and IP Address Gateway of the 9125 controller. The range for each section of the three addresses is 0 to 255. Note - If the IP address of the controller is changed, then the IP address will have to be changed in the System Settings menu
option - . Once the IP address has been changed, the communications will eventually go bad and stay bad until the settings have been updated.

NOTE: The IP address is not typically used for communications from the touch screen to the controller, but for communications between the controller to SuperDATA modules, PLCs, etc.

Redundant TC Setup

Redundant TC Setup		
Parameter	Value	
Band	20	
Delay Time	1	
TC Selection	TC 1	
Select Mode	highest	

This option allows the operator to choose which TC to control in a redundant TC setup. The redundant TC setup allows for two thermocouples to be used and measured from. This option can be configured so that the higher or lower is automatically selected or in manual mode so that the operator can choose which TC to use.

Band

The Band lets the user set how far apart the values of the TCs in the redundant setup can be before an alarm is activated. The alarm can be assigned under the Relay Assignment menu option. The range for this is $\mathbf{- 4 0 0 0}$ to 4000 .

Delay Time

This is the time in seconds that will pass once the TCs go out of band before an alarm is activated to prevent excessive, unnecessary alarming. The range is 0 to 3200 seconds.

TC Selection

To change this option from TC 1, the Select Mode must be in manual.

Select Mode

This allows the operator to choose whether the highest or lowest TC will automatically be chosen, or whether it will be manually chosen by the operator. The options are highest, lowest, and manual.

NOTE: If the 9125 has redundant TC active, then digital inputs 2 and 3 can manually override the system and force the selected TC to be TC 1 if input 1 is active or TC 2 if TC 2 is active. If both input 1 and input 2 are active, input 1 will take precedence and make TC 1 active.

Curve Entry

Most types of inputs that are used in SSi controllers are already setup with a curve built for most every type of thermocouple available, certain vacuum sensors, etc. However, if an application calls for an input without a standard curve, the curve can be built using this option. Voltages can be paired with corresponding values to create a sensor curve based off of a provided equation or data. This allows the controller to make appropriate readings from the sensor.

The first screen shows that five separate curves can be edited. Selecting one of Curve 1-5 and pressing Edit will display the screen where new curves can be assigned. The type can be toggled between Linear and None.

Thirty-two points can be assigned by selecting one of the points and pressing Edit. This allows the operator to change the Millivolts and the corresponding Value by clicking on each option. Note that all 32 points do not need to be entered;

Curve Entry		
Curve 3		
Parameter	Value	
Curve Type	linear	
Control Range	1000	
mV 1	10	
Vac 1	3	
mV 2	20	
Vac 2	4	
mV 3	30	
Vac 3	5	
mV 4	0	
Vac 4	0	
mV 5	0	
Vac 5	0	
mV 6	0	
Vac 6	0	
mV 7	0	
Vac 7	0	
mV 8	0	
Vac 8	0	
mV 9	0	
Vac 9	0	

Curve Type

This is the type of curve. The options are none or linear.

Control Range

This is the control range for the curve. The range is 0 to 32000.

$m \vee X(1-32)$

Clicking on this value will display an input box from which the user can select a new millivolt value. The range is from 0 to 32000 .

$\operatorname{Vac} X(1-32)$

Clicking on this value will display an input box from which the user can select a new vacuum value. The range is from 0 to 32000 .

Alternate PID Setup

IMPORTANT!

PID Auto Switching must be enabled in the PID Loop Setup menu before Alternate PID Setup settings will be applied.

Alternate PID Setup	
LP1 set 1	
Parameter	Value
Prop Band (0 for On/Off)	4.0
Reset	0.10
Rate	0.00
Integral Preset	0
High Limit	100
Low Limit	-100

The Alternate PID Setup menu option allows for different sets of PID values to be used.

There is a choice of LP1 Set $1-3$, LP2 Set $1-3$, and LP3 Set 1 - 3 .

Prop Band (0 for On/Off)

Proportional Band determines the response to the current error. The Proportional Band is the percent of the range of the process variable that will produce 100\% output and is the inverse of the proportional gain. A low Proportional Band value results in a larger change in output for a given error. Conversely, a high Proportional Band value results in a smaller change in output for a given error. If the Proportional Band is too small, control may oscillate or be otherwise unstable. If the Proportional Band is too large the control action may be too sluggish in response to changes within the system. Note: If the Proportional Band is set to 0.0 , only on/off control is performed. The range of values is $\mathbf{- 1 . 0}$ to 999.0.

Reset

Reset determines the influence of past errors. The Reset, or integral action lexpressed in repeats per minute), sums the error between the process variable and setpoint over time and adds this accumulated output to the proportional output. A "proportional only" controller generally operates with steady-state error because some error is required to produce control output. The goal of integral action is to drive the steady-state error to zero and eliminate this droop. The range is 0.00 through 10.00 .

Rate

Rate adjusts the response to future errors. The Rate, or derivative action (expressed in minutes), is used to predict system behavior and has a dampening effect. The more the controller tries to change the process variable the harder the derivative will work to counter that effort. This dampening effect can be valuable in reducing overshoot but is most often useful when trying to improve control on systems with significant and predicable lag. The range is 0.00 through 10.00 .

Integral Preset

This is the integral preset value. This field provides an offset for the starting point for PID control, also referred to as "Load Line" or "Manual Reset". The range is $\mathbf{- 1 0 0}$ to 100.

High Limit

This is the high limit value. The range is $\mathbf{- 1 0 0}$ to 100 .

Low Limit

This is the low limit value. The range is $\mathbf{- 1 0 0}$ to 100 .

SSi Analog Input Setup

The SSi Analog Input Setup menu option allows the user an input selection of three inputs per module, and three input
SSi Analog Input Setup

Module 1	
Parameter	Value
Input type 0	B
Input type 1	B
Innut tvoe 2	B

corrections per module. There are eight modules available. It is configurable for voltage of T/C luniversal input), and it is typically used for Load T/Cs and Auxiliary Flow Meters. Before connecting your input source to the terminals, please verify that the input type is set up correctly. If the Input Type is not correct, do not connect the input source to the terminals, as damage can occur. Please consult SSi by calling (513) 7720060 before making any changes.

Input Type 0 - Input Type 2

This will select the input type for the module. The options are:

B	NNM	160 mV	
C	R	80 mV	
E	S	40 mV	
J	T	20 mV	25.6 volts** *
K	2.56 volts	$4-20 \mathrm{~mA} / 124 \Omega$	12.8 volts $^{* *}$
N	1.28 volts	$4-20 \mathrm{~mA} / 62 \Omega$	

** - When the specified input type is selected, a jumper located inside the case will need to be placed on that specific input for reading this selection. If jumper is not placed on input, then damage could occur to the board.

Input 0 Correction - Input 2 Correction

This option will set a correction curve for the input. The options for the input corrections are: not used,
Curve 1 - Curve 3.

Input 1 Open T/C - Input 3 Open T/C
This option will allow the user to set the direction of the open T/C for each input. The options are: Up Scale or Down Scale.

SSi Configuration and Calibration		\vee
Parameter	Value	
Calibrate Aux Analog Input	click	
9220 User Calibration	click	
9220 Full Calibration	click	

SSi Configuration and Calibration

Overview

The series 9125 can be calibrated using the Instrument Configurator software supplied with the system. Before performing this procedure on a newly installed controller, the unit needs to be powered on for at least 30 minutes for a warm up period.

The series 9125 has three analog inputs. Each range has a zero and span calibration value. A cold junction trim value must be calibrated for thermocouple inputs. There are two analog outputs each with a zero and span value.

Equipment needed

A certified calibrator(s) with the ability to source and read millivolts, milliamps and thermocouples is required. The appropriate connection leads are also required. The operator interface method requires a PC with the Configurator software loaded. An Ethernet crossover cable is required.

Notes

Input 1 - terminals (-) 31 and (+) 32
Input 2 - terminals (-) 29 and (+) 30
Input 3 - terminals (-) 27 and (+) 28
Output 1 - terminals (-) 24 and (+) 25
Output 2 - terminals (-) 25 and (+) 26

Calibrate Aux Analog Input

If an SSi analog input board is set up, then this menu option will be visible. For information on how to calibrate an SSi analog input board, see the Calibrate Aux Analog Input section located at the end of this section.

User Calibration

Click on the "click" value next to the "9125 User Calibration" field to start the user calibration. The Calibration screen will be displayed. For complete calibration of Analog Inputs start with step \#1, Zero and Span Calibration. The Cold Junction Calibration should be performed AFTER the user has calibrated all of the inputs and, if needed, outputs.

Step 1. Zero then Span Calibration.

Calibration					区
Zero Input 1/Range 2					
Enter zero voltage (mV)		0.00	$\stackrel{\wedge}{*}$	Calibrate	
Span Input 1/Range 2					
Enter span	(sugg. 65.000 mV)	0.00	$\hat{*}$	Calibrate	
Current input value: 0.00270 mV					
Averaging input value					
<-Back	Next ->			Done:	

The second screen (Zero/Span Calibration), and all of the subsequent screens, will allow the user to zero and span calibrate the inputs and outputs for the 9125 controller (cold junction calibration will be performed as a final step).

For a zero calibration, a value of 0 mV will need to be sourced to the input or inputs.

In the "Zero Input $X /$ Range Y " section, enter the zero voltage and click on the Calibrate button. This will calibrate the zero range. The progress of the calibration will be shown in the progress bar at the bottom of the screen.

For a span calibration, a value of 90% of the full range (or the adjusted value) will need to be sourced to the input or inputs.

In the "Span Input $X /$ Range Y " section, enter the span voltage that you are sourcing in and click on the Calibrate button. A suggested value will be supplied. This will calibrate the span range. The progress of the calibration will be shown in the progress bar at the bottom of the screen. Repeat these steps for all of the inputs.

Clicking on the Next -> button will display the next screen(s) for the user calibration. Clicking on the <- Back button will display the previous screen(s).

Abstract

To calibrate the zero range for the outputs, you must first attach your measuring device. In the "Zero Output X " section, click on the Prep for Zero button. Let the unit output what it has set for the zero measurement, then enter what you are measuring coming out of the terminals. Once entered, click on the Calibrate button and let the procedure finish. The progress of the calibration will be shown in the progress bar at the bottom of the screen.

In the "Span Output X" section, click on the Prep for Span button. Let the unit output what it has set for the span measurement, then enter what you are measuring coming out of the terminals. Once entered, click on the Calibrate button and let the procedure finish. The progress of the calibration will be shown in the progress bar at the bottom of the screen. Repeat these steps for all of the outputs.
Once all of the inputs and outputs have been calibrated, return to the first screen for cold junction calibration, if necessary.

Step 2. Cold Junction Calibration.
If you have recently finished the zero and span calibration, and the calibration screen is still displayed, select "Done" and return to the user display. Set up the calibrator for the specific thermocouple type of the thermocouples in the analog board: type K , type J , etc. Then source a specific temperature, like $1000^{\circ} \mathrm{F}$. It is recommended that the actual temperature used be similar to an appropriate process temperature. For example, if your equipment normally operates at $1700^{\circ} \mathrm{F}$, then perform the cold junction calibration using a $1700^{\circ} \mathrm{F}$ signal. Compare what you source (on meter) to what the actual reading is (shown in Configurator). If the values are out of tolerance (per your specifications), then refer back to the User Calibration section.

The user can enter the cold junction offset in the box next to the Calibrate button. The current cold junction value will be displayed next to

Series 9125 Operations Manual

To determine whether a cold junction adjustment is necessary, source a specific temperature to the input las explained above). If the temperature reading displayed is not sufficiently close to the source value, then the "Offset" will need to be changed. Enter the amount of change in the "Temperature of Terminals"
box. If the input was showing $1748^{\circ} \mathrm{F}$, while sourcing $1750^{\circ} \mathrm{F}$, then the "Offset" difference would be $2^{\circ} \mathrm{F}$ to bring the display back up to $1750^{\circ} \mathrm{F}$.

Note: The current cold junction value is for display purposes. It will need to be used when determining the cold junction offset. You will need to add to or subtract from the displayed value the amount of difference, example $2^{\circ} \mathrm{F}$ difference being applied to 90 (like in the image) your new CJ value will need to be $92^{\circ} \mathrm{F}$.

When ready click on the Calibrate button to begin the calibration.
Wait 120 seconds and verify with a source calibration device with the correct T/C type. Note: During a normal calibration procedure, the user should zero and span calibrate all of the inputs first and then perform a cold junction calibration, if necessary.

Click on the Done button when finished. You will then be able to verify on the main display your sourced value when compared to the actual reading in Configurator.

Full Calibration

NOTE: Full calibration is performed by SSi. The below information is provided for reference only.
The Calibration screen for the Full Calibration menu option is identical in function and layout to the User Calibration's Calibration screen. The only difference is the Full Calibration's Calibration screen contains more screens. This list of screens is listed below in sequential order. Screens only found in the Full Calibration menu option are displayed in Italics. Screens only found in the User Calibration menu option are displayed in bold.

1. Cold Junction
2. Zero/Span Input O/Range 0
3. Zero/Span Input O/Range 1
4. Zero/Span Input O/Range 2
5. Zero/Span Input O/Range 3
6. Zero/Span Input 1/Range 0
7. Zero/Span Input $1 /$ Range 1
8. Zero/Span Input 1/Range 2
9. Zero/Span Input 1/Range 3
10. Zero/Span Input 2/Range 0
11. Zero/Span Input 2/Range 1
12. Zero/Span Input 2/Range 2
13. Zero/Span Input 2/Range 3
14. Zero/Span Input 3/Range 2
15. Zero/Span Input 1 Range Jumper
16. Zero/Span Input 2 Range Jumper
17. Zero/Span Input 3 Range Jumper
18. Zero/Span Output 1
19. Zero/Span Output 2

The Calibration screen for the Full Calibration menu option also has a Set Nominal button, which will set nominal values for the current screen. The user will have to confirm the action.

Clicking on the Yes button will set the nominal values, and clicking on the No button will cancel the action. Click the Done button to close the screen down.

Calibrate Aux Analog Input

If an SSi analog input board is applicable, then this menu option will be visible. The Calibration menu screen will allow the user to calibrate the zero, span, and cold junction trim value for all of the inputs on each board.
The Select button will allow the user to select one of the current boards to calibrate.
Select the appropriate board and click on the OK button. Clicking on the Cancel button will not select the board to calibrate. Note: A board must be selected for calibration to begin.
The user will need a thermocouple calibrator capable of sourcing a thermocouple signal to calibrate the zero, span or cold junction value. It is recommended to let everything (calibrator and datalogger) sit for approximately thirty minutes to allow the temperature to achieve equilibrium. Set up the calibrator for the specific thermocouple type, i.e. type K, type J, etc. Then, source a specific temperature, like $1000^{\circ} \mathrm{F}$, or millivolt to the connected input. It is recommended that the actual temperature used be similar to an appropriate process temperature. For example, if your equipment normally operates at $1700^{\circ} \mathrm{F}$, then perform the cold junction calibration using a $1700^{\circ} \mathrm{F}$ signal. It is important to note that when performing a zero or span calibration, do not use regular thermocouple wiring. Instead, use any kind of regular sensor wire, or even regular copper wire. To perform the calibrations, the user will need a calibrator that is capable of outputting volts, millivolts, and temperature.
The "Zero/Span" tab will allow the user to perform a zero and span calibration on the selected board.
The help button - (0) - next to the "Range" drop-down list will allow the user to select a range based upon an input type if the range is not known.

Select the input type and click on the OK button. The correct millivolt range will be displayed in the dropdown list. Click on the Cancel button to cancel this action.

Below is a listing of the suggested ranges for the various TC types.

TC Type mV Range Chart

$\frac{\text { TC Type }}{B} \quad \frac{\text { Range in } \mathrm{mV}}{20 \mathrm{mV}}$

C	40 mV
E	80 mV
J	80 mV
K	80 mV
N	80 mV
NNM	80 mV
R	40 mV
S	20 mV
T	20 mV

Click the Done button to close the screen down.

Auxiliary Input Offset Correction

This menu option will allow the user to enter offsets for the auxiliary inputs and apply any correction curves as needed. The offset can be in degrees + or -, and it is typically used to compensate for incorrect T/C wires.

Enable Offsets for SSi AIB

This will enable the use of offsets for any analog input boards. The options are: Yes or No.

Input 1 - Input 40

This is where the actual offsets will be entered for each input. The range is $-50.0-50.0$.

Input 0 Correction - Input 39 Correction
This is where any correction curve can be applied for each input. Note - The input names for the corrections are offset by 1 , so Input 0 is actually Input 1, Input 39 is actually Input 40, etc. The options are: Not Used, Curve 1, Curve 2, or Curve 3.

Aux Input Module Offset Correction	
Parameter	Value
Enable offsets for SSi AIB	no
Input 1	0.0
Input 2	0.0
Input 3	0.0
Input 4	0.0
Input 5	0.0
Input 6	0.0
Input 7	0.0
Input 8	0.0
Input 9	0.0
Input 10	0.0
Input 11	0.0
Input 12	0.0
Input 13	0.0
Input 14	0.0
Input 15	0.0
Input 16	0.0
Input 17	0.0
Input 18	0.0
Input 19	0.0
Input 20	0.0
Input 21	0.0
Input 22	0.0
Input 23	0.0
Input 24	0.0
Input 25	0.0
Input 26	0.0
Input 27	0.0
Input 28	0.0
Innut 20	n

Aux Setpoint Configuration

See the menu option Slave Instrument Setup for configuration prior to using Aux Setpoint Configuration. Aux Set Point Configuration is an automatic set point retransmission with a corresponding custom offset and delay to one or more of the first 3 configured slave instruments. The delay is in minutes and is only active when the set point is dropped. This feature would most commonly be used to keep the alarm set point of an overtemp tracking the furnace's main set point (with offset). The delay allows the furnace time to cool below the level specified so that there is no overtemp alarm when the furnace is cooling.

Aux Setpoint Configuration		
Parameter	Value	
Retrans to Slave 1	Off	
Retrans to Slave 2	Off	
Retrans to Slave 3	Off	
Setpoint Offset SI 1	0	0
Setpoint Offset SI 2	0	
Setpoint Offset SI 3	0	
Setpoint Delay SI 1	0	
Setpoint Delay SI 2	0	
Setpoint Delay SI 3	0	

Retrans to Slave 1 - Retrans to Slave 3

This option will determine which control loop to use as the retransmission value.
The options are:
Off
Loop 1
Note - If the setpoint is 0 , then the retransmission is blocked.

Setpoint Offset SI 1 - Setpoint Offset SI 3

Values entered will take the decimal point of the PV into account, but each value is entered in whole numbers:
Carbon: $1=0.01$
Temperature: 1 = 1
This option will apply the offset when retransmitting the value from the control loop. The range is -32768 to 32767.

Setpoint Delay SI 1 - Setpoint Delay SI 3

This is measured in seconds. This option will set the number of seconds to delay before retransmitting the value from the control loop. The range is $\mathbf{- 3 2 7 6 8}$ to 32767 .

TC Extension Correction Curves

This menu option will allow the user to set up to three TC correction curves for the 9125 controller. Clicking on the "click" value for a curve will display the curve edit form. Note: If the first "Temperature" value and the first "Error" value are both zero, then the curve will not be set. The user can enter up to ten "Temperature"/"Error" combinations. The range for the "Temperature" field is 300 to 9999 . The range for the "Error" field is -30.000 to 30.000 .

Generic Instrument Setups

The generic instrument＇s data will be stored in certain registers on the host instrument，such as the 9125 controller．Each instrument is allotted a certain set of registers，starting with register 1000．To determine the beginning register，use the following calculation：（100＊ generic instrument＇s number $(1-16))+900$ ． Therefore，instrument 1 would begin at register 1000：$(100 * 1)+900$ ．Instrument 7 would begin at register $1600:(100 * 7)+900$ ．Each instrument is allotted 100 registers，therefore， instrument 1＇s allotment is from register 1000 to 1099 on the 9125 controller，instrument 2＇s allotment is from register 1100 to 1199 on the 9125 controller，etc．

The Generic Instrument Setups menu is split into three parts：Configure Generic Instruments，Configure IP Addresses，and Configure Block Writes．

Configure Generic Instruments

This screen is where the user can configure the main sections for each generic instrument．The drop－down box in the top left will select the generic instrument to set up．The options are：
Instrument 1 －Instrument 16. The three reads can be set up in the grid in the top of the form． The Instrument Register field will be the register in the 9125 controller．The range is $0-32767$.

The Count field will be the number of successive registers to read．The range is $0-100$ ．The Storage Offset field will be the offset in the generic instruments registers（1000－1099 for Instrument 1， 1100 to 1199 for Instrument 2，etc）．The range is $0-99$ ．
The setup for the PV（Process Variable），SP（Setpoint），and Out（Output）can be done in the grid in the bottom of the form． The Offset field is the instrument＇s offset．The range is 0 － 32767．The Instrument Register field is the register in the 9125 controller．The range is $0-32767$ ．The Input Type field will determine what kind of type the value will be．The options are：Integer，Big Endian，Big Endian Byte Swap，Little Endian，or Little Endian Byte Swap．The Exponent field will determine if there is an exponent value．Checking the checkbox will indicate that the Scaler is a power of 10 ．The Input Scaler field can then be a positive or negative value in the range -31 to +31 ．The Output Type will determine what kind of the output value will be．The options are：Integer，Big Endian，Big Endian Byte Swap，Little Endian，or Little Endian Byte Swap．The Exponent field will determine if there is an exponent value．Checking the checkbox will indicate that the Scaler is a power of 10 ．The Output Scaler field can then be a positive or negative value in the range -31 to +31 ．NOTE：

IP Address Table										$\boxed{\square}$
Addresses									Port	
IP 1	0	＊	0	＊	0	人	0	＊	0	$\hat{*}$
IP 2	192	ล	168	ヘ	1	ล	229	＊	1	$\hat{\sim}$
IP 3	0	ヘ	0	＊	0	人	0	＊	0	＊
IP 4	0	$\hat{*}$	0	ค	0	ล	0	ค	0	＊
IP 5	192	人	168	会	1	＊	230	ล	2	＊
IP 6	0	人	0	ง	0	ล	0	＊	0	$\hat{*}$
IP 7	0	ヘ	0	＊	0	＊	0	＊	0	人
IP 8	0	＊	0	ヘิ	0	ล	0	＊	0	$\hat{*}$
IP 9	0	ลิ	0	＊	0	＊	0	＊	0	ิ
IP 10	0	－	0	－	0	＊	0	＊	0	$\hat{*}$
IP 11	0	－	0	＊	0	人	0	＊	0	＊
IP 12	0	ล	0	＊	0	＊	0	＊	0	$\hat{*}$
IP 13	0	ลิ	0	＊	0	人	0	＊	0	＊
IP 14	0	ล	0	ล	0	ล	0	ล	0	へ
IP 15	0	人	0	ลิ	0	人	0	＊	0	＊
IP 16	0	＊	0	＊	0	ล	0	ヘ	0	$\hat{\sim}$
									Done	

Click on the Done button to close the screen and save the changes, or select a new instrument to configure another instrument.

Configure IP Addresses

This screen will allow the user to set up the IP addresses for the generic instruments, as well as assign a port number for each instrument. (The IP addresses are independent and can be used for any instrument.) The first four columns in the grid are for the IP address. The IP address follows the standard format-e.g.., 192.168.1.230. To use this IP for instrument 5,192 would be entered in the first column, 168 would be entered for the second column, 1 would be entered for the third column, and 230 would be entered in the fourth column. The port number would be entered in the fifth column, which also has the "Port" heading. The IP address columns have a range of $0-255$, and the Port column has a range of $0-32767$.

Configure Block Writes

This screen will allow the user to configure up to five (5) block writes for the instruments.
The Instrument field is the instrument to write to. The range is $0-32$. The Update Interval field is the update time, in seconds, to perform the write. The range is $0-300$ seconds. The Source Register field is the 9125 register where the values will come from. The range is $0-32767$. The Count field is the number of successive registers to read. The range is $0-80$. The Target Register field is the slave instrument start register for the block write. The
range is $0-32767$.

DF1 Configuration

DF1 Configuration

This option allows the information data from the 9125 to be sent to the PLC DF1 Register map.

My Node

This option will allow the user to select the node. This node must not exist anywhere else on the computer's network. The range is 0 to 30000 .

PLC node

This option will allow the user to select the PLC node. This must be the node address of a PLC. The range is 0 to 30000.

PLC read table

This option will allow the user to select the PLC read table. The range is 8 to 255 .

PLC write table

This option will allow the user to select the PLC write table. The range is 8 to 255 .

PLC intermessage delay

This is the delay time (in milliseconds) between requests sent to the PLC from the 9125 controller. The request can be for any read or write transaction between the PLC and the 9125 . The range is 51 to 5000 .

Tuning Assistant

The tuning assistant will allow the user to automatically generate the PID settings for a specific loop. Click on the "click" value to start the tuning assistant. Note: It is recommended to change the temperature setpoint immediately prior to initiating an auto tune. The tuning assistant will begin tuning once there is a 10% range difference between the actual temperature and the setpoint.

The user can select the loop to tune from the Tuning Assistant. Loop 1 is the primary temperature loop; Loops 2 and 3 can be tuned if necessary. When you select "click" to open the Tuning Assistant, you will see which loop you are tuning as well as the PV and SP. When "Minimize Overshoot" is checked the Tuning Assistant will suggest more conservative PID values in an effort to control overshoot. The "Limit Output to $x \%$ " checkbox allows you to set a maximum output percentage; this feature is useful when output may need to be limited due to physical characteristics of the furnace.

Click on the Start button to begin the auto tune process. NOTE: The process may take up to 30 seconds to start depending on the difference between actual temperature and setpoint not being within 10%. Once the process has started, the "Idle" line will change to "Tuning: Pointer $x x$ ". This means that the tuning process is working. During the tuning, the temperature will oscillate around the setpoint 3 times before Tuning Assistant suggests tuning parameters. Depending on the heating and cooling abilities of the equipment, this
can take a few minutes up to a few hours. When the tuning is finished, the "Tuning: Pointer xx" line will read "Idle" again, and the list underneath will be populated with suggested PID settings. NOTE: Clicking on the Done button while the tuning is in progress will close down the screen, but the user will have to confirm the action. However, clicking on the Abort button will simply abort the calibration process.

Each column for the PID settings relates to the button below. For example, the second column is the PID settings for the Critically Damped values. The user can accept only one set of numbers. To select a set of values, click on the corresponding button. For example, to accept the critically damped values, click on the Accept Critically Damped button.

The under damped values will reach the setpoint faster, but there will be more overshoot involved. The over damped values will work to minimize the overshoot, but it will be slower than the under damped values. The critically damped values are considered the "optimum" values because they are a balance between the under damped and over damped values with regards to time and overshoot. The PI values are just the proportional band and the reset value (the P and the / from P / D). This could be applicable in an atmosphere loop, where the rate will not have much effect.

Once a set of values has been accepted, the user can press the Done button to exit the screen. The accepted values can be viewed on the PID Loop Setup menu option. In future tuning sessions, the most recent tuning parameters will be retained and adjusted PID sets will be offered.

PLC Data Mapping

PLC Data Mapping		-
Parameter	Value	,
9205 Write, offset 0	0	
9205 Write, offset 1	0	
9205 Write, offset 2	0	
9205 Write, offset 3	0	
9205 Write, offset 4	0	
9205 Write, offset 5	0	\#
9205 Write, offset 6	0	
9205 Write, offset 7	0	
9205 Write, offset 8	0	
9205 Write, offset 9	0	
9205 Write, offset 10	0	
9205 Write, offset 11	0	
ounh M/rita nffent 12	ก	

This option allows the user to custom map data from registers inside the PLC to the registers in the controller, and vice versa. The 9125 registers for mapping use a hexadecimal number to decode, so 4100hex will get instrument 1 offset 0.4101 hex will get an instrument 1 offset 1
NOTE: Convert the Hexadecimal value to Decimal value before entering it into the 9125. For example: 4400 Hex is 17408 Decimal.

Analog Input Correction Curves

Analog Input Correction Curves		-
Parameter	Value	
Input 1	click	
Input 2	click	
Input 3	click	

This option allows the user to edit a curve on an input 1,2, or 3 at a specific temperature point. Select the appropriate curve and Click to edit. Input the temperature and the error.

Instrument Calculation

The Instrument Calculation menu allows programming code-like lines to be executed at a variable time interval per step. Note - It is important to contact Super Systems at (513) 772-0060 before creating or modifying any Instrument Calculation customization.

General Description

The Instrument Calculation allows for fifty (50) lines of program and fifty (50) program variables. Program variables allow for storage on intermediate results of calculations.
A program variable is designated by a v followed by a number from 0 to the number of variables - 1 .
A Lower or Upper case " V " is valid, as well as leading zeroes. The following are all considered the same variable: V3, v3, v0003.
The 9125 's Modbus registers can be used as input variables in the equations without restriction. To protect the instrument, Modbus registers are restricted as output registers.
Modbus registers are designated by an upper or lower case " M " followed by a number.
Note - The standard Modbus routine is called to retrieve the Modbus variable, therefore a 0x8000 (-32768) will be returned for an invalid register.
Note - Modbus registers are stored with integer values, so adjustments will need to be made for decimal values.
If the instrument can have external analog input boards, or the instrument is a Video Recorder or DAQ, these inputs can be accessed directly as A1 through A40. By using the "A" designation, the Modbus register
number is not needed and the variable is scaled to the correct value (decimals included) based on the input type specified.
In a Video Recorder, the slave instrument data slots can be defined as variables D1 through D32. D31 and D32 are extra slots and have no restrictions as output variables. D1 through D30 are shared with the first ten (10) slave instruments in groups of three (3) - PV, SP, PO - and caution should be used when assigning as outputs.
A line in the program of the instrument calculation must start with a variable or a keyword.
Variables must be followed by an equal sign (=) and then an expression. The expression can be a simple assignment (V1 = 3) or a variable operation variable as described below (V1 = M225 * 0.1).
Keywords MUSTbe entered in capital letters only.
The list of valid keywords is: IF, ELSE, ENDIF, QUE, RLY, and END.
"IF" must be followed by an expression which is a variable, relationship operator, then variable.
The list of valid relationship operators is: > (Greater Than), < (Less Than). = (Equals), >= (Greater Than or Equal To), <= (Less Than or Equal To), != (Not Equal To), and == (Equal To). Note - The " $=$ " and " $==$ " relationship operators are identical.
The list of valid bitwise operators is: \& (AND), I (OR), ^ (XOR), << (Left Shift), and >> (Right Shift).
The result of the "IF" relationship test determines if the lines following the "IF" statement will be executed or not.
The "ELSE" and "ENDIF" must be on a line by themselves. "ELSE" will toggle the program based on the result of the "IF" test. "ENDIF" will close out the "IF".
Example:
IF V1 >= 30
V3 = V2 * 1.5
ELSE
$\mathrm{V} 3=5$
ENDIF
In this example, if the value in V 1 is greater than or equal to 30 , then the value of V 3 will be the value of V 2 multiplied by 1.5. If the value in V 1 is less than 30 , the value of V 3 will be 5 .
EVERY"IF" must have a closing "ENDIF". However, the "ELSE" is optional.
The "QUE" is used to send data to a slave instrument and must have three (3) variables separated by spaces. The first is the slave instrument number, the second is the register number, and the third is the data to send.
Example:
QUE 31129 V1
This example will send the value of V 1 to register 1129 on instrument 3.
The "RLY" is used to control a relay if the relay assignment is 999. The "RLY" must be followed by a variable which is the relay number ($1-8$) and a relationship expression.
Example:
RLY 5 M554 < 2
This example would turn Relay 5 ON if the communication status for instrument 5 was bad.
The "END" keyword will stop the lines from running, and start over from line 1.
There are a few functions that are available as well. The list of valid functions is: FSIN (Sine), FCOS
(Cosine), FEXP (Exponent), FLOG (Logarithm), FLN (Natural Logarithm), FSQRT (Square Root), FABS
(Absolute Value), and FPOW (Power). The Sine and Cosine functions need to have the parameter in radians.
A function must be in all caps and begin with an " F " and have a pair of parenthesis. An undefined function returns the value of the expression in the parenthesis. Note - A pair of parenthesis by themselves is considered an undefined function.
The instrument calculation has limited parsing ability. This is kept to variables, operation, variable - i.e. V1 $=12.25$ * V2. Another example is M128 = V1/100.
A negative sign $(-)$ in front of the number is considered part of the number - i.e. $\mathrm{V} 1=-2.55+\mathrm{V} 2$.
A variable to the parser is one of the following: a program variable (Vxx), a Modbus register (Mxxx), a number, or a function.
Example:
V1 $=(\mathrm{V} 2 * 1.35)+(\mathrm{V} 3 * V 4)$
Series 9125 Operations Manual

This example will multiple V2 by 1.35 and multiply V3 and V4 together, and add those two results and store that value in V1.
The maximum length of a program line is thirty-one (31) characters.
The following are the valid mathematical operators: + (Addition), - (Subtraction), * (Multiplication), /
(Division), and \% (Modulo Divide - integer only).
The difference between Division and Modulo Division is that Modulo will always return an integer value.
Example:
$11 / 4=2.75$
$11 \% 4$ = 2 (The .75 will not be returned)

Calculation Time In MS (0 to Disable)

This is the calculation time for the calculations. This will specify the delay between executing a line. Each line has the same delay between them, even if they are blank. A value of zero (0) will keep the calculations from being performed. The range is $0-10000$.

Configure Instrument Calculations

This option will display the screen where the calculations can be entered.
To edit a line, click on the Edit button. This will bring up the keyboard, which will allow the user to change the text for the calculation. If Edit is clicked on a blank line, a new calculation can be entered.
To Insert a blank line in between lines, select the line BELOW where the inserted line is going to go and click on the Insert button.
To delete a line, highlight the line and click on the Delete button.
To erase a line, highlight the line and click on the Clear button.

Flash Card Management

This section will show the user how to pull logged data from the operator interface using TS Manager.
From the TS Manager home screen, select Tools \rightarrow Communications \rightarrow Advanced Download \& Maintenance

The Transfer Data tab is used to download data from the selected touch screen. The specified recorder is identified on the drop down list from the main TS Manager Screen.
There are 2 ways to synchronize data. This can be done using the Screen as the source of the data (network connection) or Disk source (flash card from the screen). Note: Users can also download data from the
 main TS Manager screen using the "Download Data" button on the top right corner.

Synchronization will pull all Log Data, Chart Templates, Notes, and Devices that were entered on the screen onto the computer that is running TS Manager. The data will be stored in the TSManager directory under the screen name.
Log Data - Users can use the drop down list to select: All Data, Selected Data, or Skip. The check boxes are used to select which data gets included for the download when the Selected Data is selected, or which data gets skipped when the Skip option is selected.

Chart Templates - User can use the drop down list to select: All Templates, Selected Templates, or Skip. The check boxes are used to select which templates get included for the download when the Selected Templates is selected, or which templates get skipped when the Skip option is selected. Notes - User can use the drop down list to select: All Notes, Selected Notes, or Skip. The check boxes are used to select which notes get included for the download when the Selected Notes is selected, or which notes get skipped when the Skip option is selected.
Devices - Users can use the drop down list to select: All Device, Selected Device, or Skip. The check boxes are used to select which devices get included for the download when the Selected Device is selected, or which devices get skipped when the Skip
 option is selected.

Download

is used to start the synchronization process.
Note: A file that is downloaded will overwrite any existing file.

will begin the download progress.
If there are multiple screens, then each screen will be displayed along with the progress of each download. Clicking on the "Show Details" link will expand the screen and show any download details. The link will then say "Hide Details", which will shrink the screen and not provide any details. If there are any errors with downloading, then there will be an " X " next to the screen with the issue. The error will be listed in the details section. If the download is successful, then the download screen will close when the download is finished.

Flash Card Synchronization

When synchronizing from a flash card, the flash card needs to be retrieved from the touch screen. The screen should be turned off before pulling the flashcard.

The storage location of the flash card should be selected using the period button..- on the Data Transfer screen's Transfer Data tab. Note: The main location for the flash drive should be selected.

The Maintenance tab is used to delete logged data or notes either from the video screen directly or on the flash card. Logged data and notes can be removed to create additional free space on the storage card. All data that is synchronized with TS Manager maintains a backup of the data in the ..TSManager\TSScreens\"S creen Name" ${ }^{\text {LLog, }}$ Clog and notes directories.
To delete the log data, select the "Logdata" option, and to delete the notes, select the "Notes" option. One or both options may be selected at the same time. The data will be deleted by a date range, which means the user will have to select a beginning date for the date range and an ending date for the date range. The "on or after" drop-
 down list is the beginning date for the date range, and the "and older than" drop-down list is the ending date for the date range. Clicking on the Delete button will delete the selected files from the screen. The user will have to confirm the delete. The user will also be able to upload chart files to the instrument. In the "Upload Charts to Screen" section, the drop-down list has the options for "All Templates" or "Selected Templates". Click on the Upload button to upload the desired chart files. This feature is useful if the user modifies the chart files on the local computer and wishes to update the chart files on the touch screen without having to enter the modifications again.

The Done button will close out the screen.

Slave Instrument Mapping

The following tables can be used as a reference for retrieving information such as the PV, setpoint, etc from a slave instrument. The slave instrument information will have a base offset based on the instrument number that is assigned. The base offset can be determined using the following formula:

$$
\text { Base Offset = (Instrument Number * 100) }+900
$$

For example, the base offset for instrument 1 would be $1000 \rightarrow(1 * 100)+900-$ and the base offset for instrument 7 would be $1600 \rightarrow(7 * 100)+900$. The slave instruments will be split into three sections: Atmosphere Instruments, Temperature Instruments, and Events Instruments. The layout for each instrument will be the same:

- Controller - The type of controller the slave instrument is - i.e. AC20, Series 9200, etc.
- Source Location - The register in the controllerwhere the specified value is located. Note: These will be added on to the base offset of the instrument (see above section). For example, the source location for \%C actual for an AC20 is 11 . For instrument 1, the register to find the \%C actual would be $1011 \rightarrow$ the base offset for instrument 1 is 1000 , plus the source location of 11.
- Write Register - The register within the slave instrument where the value will be written.
- Read Scale - Any value read in from an instrument will be divided by this number for display purposes only.
- Write Scale - Any value written to an instrument will be multiplied by this number for display purposes only.
- Description - This will be a brief description of what the value is, i.e. \%C actual, Setpoint, etc.

Atmosphere Instruments

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
AC20	11	123	1	1	\%C Actual
(Modbus Mode)	29	138	1	1	\%C Setpoint
	13	125	1	1	Probe Temperature
	10	122	1	1	Probe Millivolts
	20	130	10	10	\%C Percent Output
	34	142	1	1	CO Factor or Equivalent
	35	143	1	1	H Factor or Equivalent
	12	124	1	1	Dew Point
	36	144	10	10	O $_{2}$

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Yoko 750	2	2	1	1	\%C Actual
(Modbus Mode)	3	100	1	1	\%C Setpoint
	20	19	1	1	Probe Temperature
	10	122	1	1	Probe Millivolts
	4	4	10	10	\%C Percent Output
	0	0	1	1	CO Factor or Equivalent
	0	0	1	1	H Factor or Equivalent

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
UDC 3300's	1	0	1	1	\%C Actual
(Modbus Mode)	3	2	1	1	\%C Setpoint
	6	5	10	10	Probe Temperature
	5	4	10	10	Probe Millivolts
	4	3	10	10	\%C Percent Output
	43	39	10	10	CO Factor or Equivalent
	43	39	10	10	H Factor or Equivalent

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Dualpro Loop 1	21	20	1	1	\%C Actual
(Modbus Mode)	7	6	1	1	\%C Setpoint
	78	17	8	8	Probe Temperature
	19	18	8	8	Probe Millivolts
	41	40	41	41	\%C Percent Output
	4	3	1	1	CO Factor or Equivalent
	5	4	1	1	H Factor or Equivalent

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Dualpro Loop 2	21	20	1	1	\%C Actual
(Modbus Mode)	8	7	1	1	\%C Setpoint
	18	17	8	8	Probe Temperature
	19	18	8	8	Probe Millivolts
	42	41	41	41	\%C Percent Output
	4	3	1	1	CO Factor or Equivalent
	5	4	1	1	H Factor or Equivalent

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Dualpro Loop 1	20	20	1	1	\%C Actual
(MMI Mode)	6	6	1	1	\%C Setpoint
	17	17	8	8	Probe Temperature
	18	18	8	8	Probe Millivolts
	40	40	41	41	\%C Percent Output
	3	3	1	1	CO Factor or Equivalent
	4	4	1	1	H Factor or Equivalent

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Dualpro Loop 2	20	20	1	1	\%C Actual
(MMI Mode)	7	7	1	1	\%C Setpoint
	17	17	8	8	Probe Temperature
	18	18	8	8	Probe Millivolts
	41	41	41	41	\%C Percent Output
	3	3	1	1	CO Factor or Equivalent
	4	4	1	1	H Factor or Equivalent

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Eurotherm 2404	1	1	1	1	\%C Actual
(Modbus Mode)	5	5	1	1	\%C Setpoint
	72	11073	1	1	Probe Temperature
	61	11062	1	1	Probe Millivolts
	4	4	1	1	\%C Percent Output
	0	0	1	1	CO Factor or Equivalent
	0	0	1	1	H Factor or Equivalent

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Eurotherm 2500	1	1	1	1	\%C Actual
(Modbus Mode)	5	5	1	1	\%C Setpoint
	72	11073	1	1	Probe Temperature
Assumes Loop 1 =	61	11062	1	1	Probe Millivolts
Atmosphere	4	4	1	1	\%C Percent Output
	68	11069	1	1	CO Factor or Equivalent
	68	11069	1	1	H Factor or Equivalent

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Carbpro 3.5	6	28	1	1	\%C Actual
(MMI Mode)	1	1	1	1	\%C Setpoint
	5	25	8	8	Probe Temperature
	4	24	8	8	Probe Millivolts
	11	117	1	1	\%C Percent Output
	13	7	1	1	CO Factor or Equivalent
	14	8	1	1	H Factor or Equivalent

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Carbpro 3.0	6	28	4	4	\%C Actual
(MMI Mode)	1	1	1	1	\%C Setpoint
	5	25	8	8	Probe Temperature
	4	24	2	2	Probe Millivolts
	11	117	1	1	\%C Percent Output
	13	7	1	1	CO Factor or Equivalent
	14	8	1	1	H Factor or Equivalent

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Carbpc	20	20	1	1	\%C Actual
(MMI Mode)	6	6	1	1	\%C Setpoint
	17	17	8	8	Probe Temperature
	18	18	8	8	Probe Millivolts
	64	64	41	41	\%C Percent Output
	3	3	1	1	CO Factor or Equivalent
	4	4	1	1	H Factor or Equivalent

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Series 9200 Loop 1	3	126	1	1	\%C Actual
	5	128	1	1	\%C Setpoint
	22	145	1	1	Probe Temperature
	21	144	10	10	Probe Millivolts
	7	130	10	10	\%C Percent Output
	19	142	1	1	CO Factor or Equivalent
	20	143	1	1	H Factor or Equivalent

Temperature Instruments

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Series 20	11	123	1	1	Temperature Controller Actual
(Modbus Mode)	30	138	1	1	Temperature Controller Setpoint
	18	130	10	10	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Yoko 750	2	2	1	1	Temperature Controller Actual
(Modbus Mode)	3	100	1	1	Temperature Controller Setpoint
	4	4	10	10	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
UDC 3300's	1	0	10	10	Temperature Controller Actual
(Modbus Mode)	3	2	10	10	Temperature Controller Setpoint
	4	3	10	10	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Dualpro Loop 1	18	17	8	8	Temperature Controller Actual
(Modbus Mode)	7	6	1	1	Temperature Controller Setpoint
	41	40	41	41	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Dualpro Loop 2	18	17	8	8	Temperature Controller Actual
(Modbus Mode)	8	7	1	1	Temperature Controller Setpoint
	42	41	41	41	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Dualpro Loop 1	17	17	8	8	Temperature Controller Actual
(MMI Mode)	6	6	1	1	Temperature Controller Setpoint
	40	40	41	41	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Dualpro Loop 2	17	17	8	8	Temperature Controller Actual
(MMI Mode)	7	7	1	1	Temperature Controller Setpoint
	41	41	41	41	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Eurotherm 2404	1	1	1	1	Temperature Controller Actual
(Modbus Mode)	2	2	1	1	Temperature Controller Setpoint
	3	3	10	10	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Eurotherm 2500	26	1025	1	1	Temperature Controller Actual
(Modbus Mode)	27	1026	1	1	Temperature Controller Setpoint
Assumes Loop 2 is Temperature	29	1028	10	10	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Unipro 3.5	3	25	8	8	Temperature Controller Actual
(MMI Mode)	1	1	1	1	Temperature Controller Setpoint
	5	118	1	1	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Unipro 3.0	3	25	8	8	Temperature Controller Actual
(MMI Mode)	1	1	1	1	Temperature Controller Setpoint
	5	118	1	1	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Carbpro 3.5 Slave	9	46	1	1	Temperature Controller Actual
(MMI Mode)	3	18	1	1	Temperature Controller Setpoint
	12	53	41	41	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Carbpro 3.0 Slave	9	46	1	1	Temperature Controller Actual
(MMI Mode)	3	18	1	1	Temperature Controller Setpoint
	12	53	41	41	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
10Pro Slave or E Slave	2	2	1	1	Temperature Controller Actual
(MMI Mode)	3	3	1	1	Temperature Controller Setpoint
	4	4	1	1	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Dualpro Input C	19	19	8	8	PV
	5	5	1	1	Setpoint Loop 1
	50	40	41	41	Percent Output Loop 1

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Series 9200 Loop 1	3	126	1	1	Temperature Controller Actual
	5	128	1	1	Temperature Controller Setpoint
	7	130	10	10	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Series 9200 Loop 2	8	131	1	1	Temperature Controller Actual
	10	133	1	1	Temperature Controller Setpoint
	12	135	10	10	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Series 9200 Loop 3	13	136	1	1	Temperature Controller Actual
	15	138	1	1	Temperature Controller Setpoint
	17	140	10	10	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Series 9100 Loop 2	1	104	1	1	Temperature Controller Actual
	36	139	1	1	Temperature Controller Setpoint
	28	131	10	10	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Eurotherm Loop 1	1	1	1	1	Temperature Controller Actual
(Modbus Mode)	2	2	1	1	Temperature Controller Setpoint
	3	3	10	10	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Eurotherm Loop 2	26	1025	1	1	Temperature Controller Actual
(Modbus Mode)	27	1026	1	1	Temperature Controller Setpoint
	29	1028	10	10	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Eurotherm Loop 3	51	1049	1	1	Temperature Controller Actual
(Modbus Mode)	52	1050	1	1	Temperature Controller Setpoint
	53	1052	10	10	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
9500 Valve Controller Valve 1	30	130	1	1	Flow Actual
	56	156	1	1	Flow Setpoint
	54	154	1	1	Flow Percent of Full Scale

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
9500 Valve Controller Valve 2	31	131	1	1	Flow Actual
	66	166	1	1	Flow Setpoint
	64	164	1	1	Flow Percent of Full Scale

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
9500 Valve Controller Valve 3	32	132	1	1	Flow Actual
	76	176	1	1	Flow Setpoint
	74	174	1	1	Flow Percent of Full Scale

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
9500 Valve Controller Valve 4	33	133	1	1	Flow Actual
	86	186	1	1	Flow Setpoint
	84	184	1	1	Flow Percent of Full Scale

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
SSi 7SL Limit Controller	4	123	1	1	Limit Controller Actual
	8	177	1	1	Limit Controller Alarm Threshold (SP)
	11	310	1	1	Limit Controller Main Setpoint

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Flow Meter	1	16	1	1	Flow
	3	18	1	1	Setpoint
	0	0	1	1	No Value Available

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
UMC 800 Loop 1	0	64	1	1	PV Actual
All Values are	4	68	1	1	Working Setpoint
Floating Point	6	70	1	1	Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
SSi Quad DAC Ch. 0	10	10	1	1	DAC Out
	10	10	1	1	DAC Out
	16	16	1	1	No Value Available

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
SSi Quad DAC Ch. 1	11	11	1	1	DAC Out
	11	11	1	1	DAC Out
	16	16	1	1	No Value Available

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
SSi Quad DAC Ch. 2	12	12	1	1	DAC Out
	12	12	1	1	DAC Out
	16	16	1	1	No Value Available

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
SSi Quad DAC Ch. 3	13	13	1	1	DAC Out
	13	13	1	1	DAC Out
	16	16	1	1	No Value Available

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Yoko UT350/320	2	2	1	1	Temperature Controller Actual
(Modbus Mode)	3	300	1	1	Temperature Controller Setpoint
	4	4	10	10	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Yoko UP750/550 Loop 2	18	18	1	1	Temperature Controller Actual
(Modbus Mode)	19	101	1	1	Temperature Controller Setpoint
	20	20	10	10	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Yoko UP350	2	2	1	1	Temperature Controller Actual
(Modbus Mode)	3	138	1	1	Temperature Controller Setpoint
	4	4	10	10	Temperature Controller Percent Output

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Honeywell DCP551	4	259	10	10	Temperature Controller Actual
	5	702	10	10	Temperature Controller Setpoint
	0	0	10	10	Temperature Controller Percent Output

Events Instruments

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
AC20	50	310	1	1	Events Actual
(Modbus Mode)	50	310	1	1	Events Setpoint
	49	300	1	1	Events Input

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Yoko 750	49	310	1	1	Events Actual
(Modbus Mode)	49	310	1	1	Events Setpoint
	49	310	1	1	Events Input

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
ModMux	97	97	1	1	Events Actual
(Modbus Mode)	97	97	1	1	Events Setpoint
	98	98	1	1	Events Input

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Dualpro Events	59	178	1	1	Events Actual
(Modbus Mode)	49	168	1	1	Events Setpoint
	59	178	1	1	Events Input

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Dualpro Events	82	178	1	1	Events Actual
(MMI Mode)	72	168	1	1	Events Setpoint
	82	178	1	1	Events Input

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Carbpro 3.5 Events	8	43	1	1	Events Actual
(MMI Mode)	2	17	1	1	Events Setpoint
	8	43	1	1	Events Input

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Carbpro 3.0 Events	8	43	1	1	Events Actual
(MMI Mode)	2	17	1	1	Events Setpoint
	8	43	1	1	Events Input

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Eurotherm 2500	19	19	8	8	PV
(Modbus Mode)	5	5	1	1	Setpoint Loop 1
	40	40	1	1	Percent Output Loop 1

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
SSi_8_8	5	100	1	1	Events Actual
	3	98	1	1	Events Setpoint
	6	101	1	1	Events Input

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Series 9200	5	176	1	1	Events Actual
	2	109	1	1	Events Setpoint
	4	175	1	1	Events Input

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
Micrologix Modbus	10	110	1	1	Events Actual
RS-232	0	100	1	1	Events Setpoint
	15	115	1	1	Events Input

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
MCMModule Modbus	10	110	1	1	Events Actual
RS-232	0	100	1	1	Events Setpoint
	15	115	1	1	Events Input

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
PLC5DF1	10	110	1	1	Events Actual
RS-232	0	100	1	1	Events Setpoint
	15	115	1	1	Events Input

Controller	Source Location	Write Register	Read Scale	Write Scale	Description
SLKDF1	10	110	1	1	Events Actual
RS-232	0	100	1	1	Events Setpoint
	15	115	1	1	Events Input

9125 Analog Input Board Jumper Settings

The 9125 analog input boards are initially set up with the following configuration: Input 1 - Temperature/Thermocouple

In order to change these settings, the following steps must be taken:

1. If necessary, shut down the 9125 screen software by clicking on the Shutdown menu option from the Configuration menu
2. Shut down power to the screen and any

connected instrument
3. Remove the cover of the 9125 instrument. This is done by removing the four (4) screws in the corner of the 9125 instrument box, and then pushing the two (2) tabs on the side of the box outward while pulling on the chassis
4. Remove the analog input board
5. In order for an input to be set up as a voltage input, a jumper must be placed on the two pins of the input
 Temperature
6. To set an input for voltage, place the gray jumper over the two pins on the desired input. To set an input for temperature, remove the gray jumper from the two pins on the desired input.
*** WARNING: A jumper must be placed over the input before voltage inputs can be applied or the analog input board will be damaged ***
7. Re-insert the analog input board
8. Replace the cover on the 9125 instrument
9. Re-attach the power to the screen and any connected device
10. Power up the Advantech Touchscreen
11. From the Analog Input Setup menu screen, select the appropriate input and change the T/C Type to the correct type

Contact Super Systems Inc. at 513-772-0060 if there are any questions or problems.

Warranty

Limited Warranty for Super Systems Products:

The Limited Warranty applies to new Super Systems Inc. (SSI) products purchased direct from SSI or from an authorized SSI dealer by the original purchaser for normal use. SSI warrants that a covered product is free from defects in materials and workmanship, with the exceptions stated below.

The limited warranty does not cover damage resulting from commercial use, misuse, accident, modification or alteration to hardware or software, tampering, unsuitable physical or operating environment beyond product specifications, improper maintenance, or failure caused by a product for which SSI is not responsible. There is no warranty of uninterrupted or error-free operation. There is no warranty for loss of data-you must regularly back up the data stored on your product to a separate storage product. There is no warranty for product with removed or altered identification labels. SSI DOES NOT PROVIDE ANY OTHER WARRANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OF IMPLIED WARRANTIES, SO THIS LIMITATION MAY NOT APPLY TO YOU. SSI is not responsible for returning to you product which is not covered by this limited warranty.

If you are having trouble with a product, before seeking limited warranty service, first follow the troubleshooting procedures that SSI or your authorized SSI dealer provides.

SSI will replace the PRODUCT with a functionally equivalent replacement product, transportation prepaid after PRODUCT has been returned to SSI for testing and evaluation. SSI may replace your product with a product that was previously used, repaired and tested to meet SSI specifications. You receive title to the replaced product at delivery to carrier at SSI shipping point. You are responsible for importation of the replaced product, if applicable. SSI will not return the original product to you; therefore, you are responsible for moving data to another media before returning to SSI, if applicable. Data Recovery is not covered under this warranty and is not part of the warranty returns process. SSI warrants that the replaced products are covered for the remainder of the original product warranty or 90 days, whichever is greater.

Appendix A - Wiring Diagram of Series 9125

Appendix B - Factory Default Settings for the 9125 Controller

	Field
Revision	
Revision	2.64
Probe Setup	90
Burnoff Time (sec)	120
Burnoff Rec. Wait Time (sec)	0
Burnoff Interval (min)	800
Burnoff Minimum Millivolts	2000
Burnoff Maximum Temperature	event
Digital IN 4 Assignment	0
Burnoff Minimum Millivolts Alarm SP	9999
Burnoff Maximum Temperature Rise Limit	
PID Loop 1 Setup	20.0
Prop Band (0 for On/Off)	0.10
Reset	0.00
Rate	Single Reverse
Mode	0
Integral Preset	60
Cycle Time	OFF
Setpoint Change Limit	0
Low Limit	100
High Limit	no
O set point stops control	no
IN1 high limit shuts down ctrl	no
IN2 high limit shuts down ctrl	no
IN3 high limit shuts down ctrl	no
PID auto switch	9999
Switch Point PID 1->2	9999
Switch Point PID 2->3	-9999
Setpoint Lower Limit	29999
Setpoint Upper Limit	internal
PV Source	0.00
Minimum Fwd On Time (sec)	0.00
Minimum Fwd Off Time (sec)	0.00
Minimum Rev On Time (sec)	0.00
Minimum Rev Off Time (sec)	100.0
Positive Output Accumulator	0.0
Negative Output Accumulator	no
Overshoot Control Logic	Ramp Detect Logic

Field	Factory Default Value
Ramp Overshoot Control Level 1	no
Ramp Overshoot Control Level 2	no
Output rate change limit, \%/sec	0.0
PID Switch Variable	Process variable
PID Loop 2 Setup	
Prop Band (0 for On/Off)	4.0
Reset	0.10
Rate	0.00
Mode	Single Reverse
Integral Preset	0
Cycle Time	60
Setpoint Change Limit	OFF
Low Limit	0
High Limit	100
0 set point stops control	no
IN1 high limit shuts down ctrl	no
IN2 high limit shuts down ctrl	no
IN3 high limit shuts down ctrl	no
PID auto switch	no
Switch Point PID 1->2	9999
Switch Point PID 2->3	9999
Setpoint Lower Limit	-9999
Setpoint Upper Limit	29999
PV Source	internal
Minimum Fwd On Time (sec)	0.00
Minimum Fwd Off Time (sec)	0.00
Minimum Rev On Time (sec)	0.00
Minimum Rev Off Time (sec)	0.00
Positive Output Accumulator	0.0
Negative Output Accumulator	0.0
Overshoot Control Logic	no
Ramp Detect Logic	no
Ramp Overshoot Control Level 1	no
Ramp Overshoot Control Level 2	no
Output rate change limit, \%/sec	0.0
PID Switch Variable	Process variable
PID Loop 3 Setup	
Prop Band (0 for On/Off)	4.0
Reset	0.10
Rate	0.00
Mode	Single Reverse
Integral Preset	0
Series 9125 Operations Manual	38

Field	Factory Default Value
Cycle Time	60
Setpoint Change Limit	OFF
Low Limit	0
High Limit	100
0 set point stops control	no
IN1 high limit shuts down ctrl	no
IN2 high limit shuts down ctrl	no
IN3 high limit shuts down ctrl	no
PID auto switch	no
Switch Point PID 1->2	9999
Switch Point PID 2->3	9999
Setpoint Lower Limit	-9999
Setpoint Upper Limit	29999
PV Source	internal
Minimum Fwd On Time (sec)	0.00
Minimum Fwd Off Time (sec)	0.00
Minimum Rev On Time (sec)	0.00
Minimum Rev Off Time (sec)	0.00
Positive Output Accumulator	0.0
Negative Output Accumulator	0.0
Overshoot Control Logic	no
Ramp Detect Logic	no
Ramp Overshoot Control Level 1	no
Ramp Overshoot Control Level 2	no
Output rate change limit, \%/sec	0.0
PID Switch Variable	Process variable
Port Setup	
Host 232 Baud	19200
Host 232 Mode	Modbus
Host 485 (3,4) Baud	19200
Host 485 (3,4) Mode	Modbus
Host 485 Address	1
Slave $1(5,6)$ Baud	19200
Slave $1(5,6)$ Mode	Modbus
Slave $1(5,6)$ Bits	8, None, 1
Slave $2(22,23)$ Baud	19200
Slave $2(22,23)$ Mode	Modbus
Slave 2 (22,23) Bits	8, None, 1
PLC Type	DF1 Slik
Host 232-2 Baud	19200
Host 232-2 Mode	Modbus

Field	Factory Default Value
Slave Instrument Setup	
Instrument 1	SSi 7SL @ 1 on slave 1
Instrument 2	
Instrument 3	
Instrument 4	
Instrument 5	
Instrument 6	
Instrument 7	
Instrument 8	
Instrument 9	
Instrument 10	
Instrument 11	
Instrument 12	
Instrument 13	
Instrument 14	
Instrument 15	
Instrument 16	
Instrument 17	
Instrument 18	
Instrument 19	
Instrument 20	
Instrument 21	
Instrument 22	
Instrument 23	
Instrument 24	
Instrument 25	
Zone 1 Assignment	
Atm Instrument	Loop 1
Atm Zone Number	0
Default Zone Offset, atm	0.00
Temp Instrument	Loop 1
Temp Zone Number	0
Default Zone Offset, temp	0
Zone 2 Assignment	
Atm Instrument	Loop 1
Atm Zone Number	0
Default Zone Offset, atm	0.00
Temp Instrument	Loop 1
Temp Zone Number	0
Default Zone Offset, temp	0
Zone 3 Assignment	
Atm Instrument	Loop 1
Series 9125 Operations Manual	40

	Field
Atm Zone Number	0
Default Zone Offset, atm	Loopault Value
Temp Instrument	0
Temp Zone Number	0
Default Zone Offset, temp	Loop 1
Zone 4 Assignment	0
Atm Instrument	0.00
Atm Zone Number	Loop 1
Default Zone Offset, atm	0
Temp Instrument	0
Temp Zone Number	
Default Zone Offset, temp	Loop 1
Zone 5 Assignment	0
Atm Instrument	0.00
Atm Zone Number	Loop 1
Default Zone Offset, atm	0
Temp Instrument	0
Temp Zone Number	
Default Zone Offset, temp	Multiloop
Furnace Setup	or
PVT Type	Loop 1
Temperature Mode	Loop 2
Loop 1 Instrument	internal
Loop 2 Instrument	LP 1, LP 2
Event Instrument	invalid
Multi-loop display	Temper 1, 2, \& 3
Date and Time	Dewpoint re 1 ea C
Furnace Name	Temperature 2
PV1 Name	Temperature 3 K de
PV2 Name	0
PV3 Name	0
Slave Event Boards	0
CO Factor	2500
H Factor	PV2 proc high
Furnace Name	Alarm 1 Setup
Setpoint	Alarm Type
Hysteresis	Smart Alarm
ON Delay Time (sec)	SP blocks alarm
Series 9125 Operations Manual	

Field	Factory Default Value
BO/Impedance inhibits alarm	no
Inhibit source	none
Disable on open input	no
Alarm 2 Setup	
Setpoint	10
Alarm Type	PV1 band
Hysteresis	1
Smart Alarm	disabled
ON Delay Time (sec)	0
0 SP blocks alarm	no
BO/Impedance inhibits alarm	no
Inhibit source	none
Disable on open input	no
Alarm 3 Setup	
Setpoint	2000
Alarm Type	PV2 proc high
Hysteresis	1
Smart Alarm	disabled
ON Delay Time (sec)	0
0 SP blocks alarm	no
BO/Impedance inhibits alarm	no
Inhibit source	none
Disable on open input	yes
Relay Assignments	
Relay 1	loop 2 fwd
Relay 2	N/A
Relay 3	loop 1 fwd
Relay 4	loop 1 rev
Relay 5	N/A
Relay 6	N/A
Relay 7	alarm 1
Relay 8	alarm 2
Module 1 Inputs	not assigned
Module 1 Relay 1	loop 1 fwd
Module 1 Relay 2	loop 1 fwd
Module 1 Relay 3	loop 1 fwd
Module 1 Relay 4	loop 1 fwd
Module 1 Relay 5	loop 1 fwd
Module 1 Relay 6	loop 1 fwd
Module 1 Relay 7	loop 1 fwd
Module 1 Relay 8	loop 1 fwd
Module 2 Inputs	not assigned

Field	Factory Default Value
Module 2 Relay 1	loop 1 fwd
Module 2 Relay 2	loop 1 fwd
Module 2 Relay 3	loop 1 fwd
Module 2 Relay 4	loop 1 fwd
Module 2 Relay 5	loop 1 fwd
Module 2 Relay 6	loop 1 fwd
Module 2 Relay 7	loop 1 fwd
Module 2 Relay 8	loop 1 fwd
Module 3 Inputs	not assigned
Module 3 Relay 1	loop 1 fwd
Module 3 Relay 2	loop 1 fwd
Module 3 Relay 3	loop 1 fwd
Module 3 Relay 4	loop 1 fwd
Module 3 Relay 5	loop 1 fwd
Module 3 Relay 6	loop 1 fwd
Module 3 Relay 7	loop 1 fwd
Module 3 Relay 8	loop 1 fwd
Module 4 Inputs	not assigned
Module 4 Relay 1	loop 1 fwd
Module 4 Relay 2	loop 1 fwd
Module 4 Relay 3	loop 1 fwd
Module 4 Relay 4	loop 1 fwd
Module 4 Relay 5	loop 1 fwd
Module 4 Relay 6	loop 1 fwd
Module 4 Relay 7	loop 1 fwd
Module 4 Relay 8	loop 1 fwd
Relay Setpoints	
Relay ON SP for IN1 A	0
Relay OFF SP for IN1 A	0
Relay ON SP for IN1 B	0
Relay OFF SP for IN1 B	0
Relay ON SP for IN1 C	0
Relay OFF SP for IN1 C	0
Relay ON SP for IN2 A	0
Relay OFF SP for IN2 A	0
Relay ON SP for IN2 B	0
Relay OFF SP for IN2 B	0
Relay ON SP for IN2 C	0
Relay OFF SP for IN2 C	0
Relay ON SP for IN3 A	0
Relay OFF SP for IN3 A	0
Relay ON SP for IN3 B	0

Field	Factory Default Value
Relay OFF SP for IN3 B	0
Relay ON SP for IN3 C	0
Relay OFF SP for IN3 C	0
Input 1 Setup	
Input Type	1.25 volts
Filter Time	2
Initial Scale	-50
Full Scale	113
Decimal Point Location	0
Open Input	up scale
Input Offset	0
Trip Point 1 Setpoint	0
Trip Point 1 Force Value	0
Trip Point 1 Direction	input above setpoint
Trip Point 2 Setpoint	0
Trip Point 2 Force Value	0
Trip Point 2 Direction	input above setpoint
High Input Limit Setpoint	9999
High Input Limit Hysteresis	1
Use Input Correction Curve	no
Input 2 Setup	
Input Type	K
Filter Time	2
Initial Scale	0
Full Scale	10000
Decimal Point Location	0
Open Input	up scale
Input Offset	0
Trip Point 1 Setpoint	0
Trip Point 1 Force Value	0
Trip Point 1 Direction	input above setpoint
Trip Point 2 Setpoint	0
Trip Point 2 Force Value	0
Trip Point 2 Direction	input above setpoint
High Input Limit Setpoint	9999
High Input Limit Hysteresis	1
Use Input Correction Curve	no
Input 3 Setup	
Input Type	K
Filter Time	2
Initial Scale	0
Full Scale	10000
Series 9125 Operations Manual	44

Field	Factory Default Value
Decimal Point Location	0
Open Input	up scale
Input Offset	0
Trip Point 1 Setpoint	0
Trip Point 1 Force Value	0
Trip Point 1 Direction	input above setpoint
Trip Point 2 Setpoint	0
Trip Point 2 Force Value	0
Trip Point 2 Direction	input above setpoint
High Input Limit Setpoint	9999
High Input Limit Hysteresis	1
Use Input Correction Curve	no
Output 1 Setup	
Assignment	loop 2 inc
Offset	0
Range	100
Current Selection	4-20 mA
Output 2 Setup	
Assignment	loop 1 inc
Offset	-50
Range	80
Current Selection	4-20 mA
Output 3 Setup	
Assignment	PV1 retrans
Offset	0
Range	0
Current Selection	4-20 mA
Output 4 Setup	
Assignment	PV1 retrans
Offset	0
Range	0
Current Selection	4-20 mA
Output 5 Setup	
Assignment	PV1 retrans
Offset	0
Range	0
Current Selection	4-20 mA
Output 6 Setup	
Assignment	PV1 retrans
Offset	0
Range	0
Current Selection	4-20 mA
Series 9125 Operations Manual 145	

	Field
Passcodes	
Level 1 Code	1
Level 2 Code	2
Web Level 1 Code	111
Web Level 2 Code	222
Web Change Enable	1
Alarm 1	normally closed Value
Alarm 2	normally open
Alarm 3	normally open
IP Address	
IP Address	192.168 .0 .200
IP Mask	255.255 .255 .0
IP Gateway	192.168 .1 .1
Redundant TC Setup	
Band	20
Delay Time	1
TC Selection	TC 1
Select Mode	highest
Curve 1 Entry	
Curve Type	none
Control Range	24823
mV 1	-5271
Vac 1	-6367
mV 2	6555
Vac 2	-15131
mV 3	10503
Vac 3	10537
mV 4	-7701
Vac 4	4377
mV 5	6
Vac 5	-8935
mV 6	228
Vac 6	20770
mV 7	4428
Vac 7	-32768
mV 8	21290
Vac 8	10572
mV 9	21229
Vac 9	mV 10
mac 10	
Series 9125 Operations Manual	

Field	Factory Default Value
Vac 11	-4634
mV 12	20827
Vac 12	8524
mV 13	8
Vac 13	-7219
mV 14	-5249
Vac 14	-223
mV 15	-9216
Vac 15	19234
mV 16	-4788
Vac 16	20827
mV 17	8524
Vac 17	255
mV 18	8924
Vac 18	19537
mV 19	23533
Vac 19	19537
mV 20	-32735
Vac 20	-9216
mV 21	8683
Vac 21	0
mV 22	-4681
Vac 22	-13230
mV 23	-26166
Vac 23	-4638
mV 24	20827
Vac 24	8524
mV 25	-256
Vac 25	8940
mV 26	19537
Vac 26	23533
mV 27	19531
Vac 27	33
mV 28	-18688
Vac 28	21229
mV 29	11212
Vac 29	-13620
mV 30	-7448
Vac 30	23533
mV 31	19537
Vac 31	33
mV 32	-18688
Series 9125 Operations Manual	

	Field
Vac 32	21229
Curve 2 Entry	
Curve Type	linear
Control Range	289
mV 1	8704
Vac 1	19537
mV 2	21802
Vac 2	9036
mV 3	-14319
Vac 3	17408
mV 4	-2227
Vac 4	26976
mV 5	8683
Vac 5	30620
mV 6	-6887
Vac 6	21290
mV 7	10572
Vac 7	-7701
mV 8	-8935
Vac 8	228
mV 9	10987
Vac 9	19537
mV 10	-17203
Vac 10	8843
mV 11	19535
Vac 11	-27709
mV 12	-4634
Vac 12	19291
mV 13	8524
Vac 13	30620
mV 14	148
Vac 14	-15396
mV 15	-6721
Vac 15	16929
mV 16	-6836
Vac 16	21802
mV 17	9036
Vac 17	-14319
mV 18	17408
Vac 18	-2227
Vac 19	26976
Series 9125 Operations Manual	

Field	Factory Default Value
mV 20	-6887
Vac 20	21290
mV 21	10572
Vac 21	-7701
mV 22	-8935
Vac 22	228
mV 23	8683
Vac 23	8
mV 24	-7219
Vac 24	-5249
mV 25	-223
Vac 25	-9216
mV 26	-7811
Vac 26	8567
mV 27	19521
Vac 27	10981
mV 28	19541
Vac 28	4387
mV 29	200
Vac 29	19780
mV 30	24823
Vac 30	-5271
mV 31	-25567
Vac 31	6519
mV 32	10981
Vac 32	19539
Curve 3 Entry	
Curve Type	linear
Control Range	-5376
mV 1	-223
Vac 1	-9216
mV 2	-7811
Vac 2	8567
mV 3	19524
Vac 3	10981
mV 4	19541
Vac 4	4387
mV 5	200
Vac 5	19780
mV 6	24823
Vac 6	-5271
mV 7	-25567
Series 9125 Operations Manual 149	

Field	Factory Default Value
Vac 7	6519
mV 8	10981
Vac 8	19539
mV 9	10531
Vac 9	-7701
mV 10	-8935
Vac 10	228
mV 11	8683
Vac 11	8
mV 12	-7219
Vac 12	-5249
mV 13	-223
Vac 13	-9216
mV 14	-7811
Vac 14	8567
mV 15	19523
Vac 15	10981
mV 16	19541
Vac 16	4387
mV 17	200
Vac 17	19780
mV 18	24823
Vac 18	-5271
mV 19	-25567
Vac 19	6519
mV 20	10981
Vac 20	19539
mV 21	10531
Vac 21	-7701
mV 22	-8935
Vac 22	228
mV 23	8683
Vac 23	255
mV 24	32220
Vac 24	30689
mV 25	-8509
Vac 25	8677
mV 26	19524
Vac 26	10981
mV 27	19541
Vac 27	4387
mV 28	200
Series 9125 Operations Manual 150	

	Field
Vac 28	19780
mV 29	24823
Vac 29	-5271
mV 30	-25567
Vac 30	6519
mV 31	10981
Vac 31	19539
mV 32	0
Vac 32	0
Curve 4 Entry	
Curve Type	none
Control Range	
mV 1	0
Vac 1	0
mV 2	0
Vac 2	0
mV 3	0
Vac 3	0
mV 4	0
Vac 4	0
mV 5	0
Vac 5	0
mV 6	0
Vac 6	0
mV 7	0
Vac 7	0
mV 8	0
Vac 8	0
mV 9	0
Vac 9	0
mV 10	0
Vac 10	0
mV 11	0
Vac 11	0
mV 12	0
Vac 12	0
mV 13	0
Vac 13	0
mV 14	Vac 14
VV 15	0

Field	Factory Default Value
mV 16	0
Vac 16	0
mV 17	0
Vac 17	0
mV 18	0
Vac 18	0
mV 19	0
Vac 19	0
mV 20	0
Vac 20	0
mV 21	0
Vac 21	0
mV 22	0
Vac 22	0
mV 23	0
Vac 23	0
mV 24	0
Vac 24	0
mV 25	0
Vac 25	0
mV 26	0
Vac 26	0
mV 27	0
Vac 27	0
mV 28	0
Vac 28	0
mV 29	0
Vac 29	0
mV 30	0
Vac 30	0
mV 31	0
Vac 31	0
mV 32	0
Vac 32	0
Curve 5 Entry	
Curve Type	none
Control Range	0
mV 1	0
Vac 1	0
mV 2	0
Vac 2	0
mV 3	0
Series 9125 Operations Manual	52

Field	Factory Default Value
Vac 3	0
mV 4	0
Vac 4	0
mV 5	0
Vac 5	0
mV 6	0
Vac 6	0
mV 7	0
Vac 7	0
mV 8	0
Vac 8	0
mV 9	0
Vac 9	0
mV 10	0
Vac 10	0
mV 11	0
Vac 11	0
mV 12	0
Vac 12	0
mV 13	0
Vac 13	0
mV 14	0
Vac 14	0
mV 15	0
Vac 15	0
mV 16	0
Vac 16	0
mV 17	0
Vac 17	0
mV 18	0
Vac 18	0
mV 19	0
Vac 19	0
mV 20	0
Vac 20	0
mV 21	0
Vac 21	0
mV 22	0
Vac 22	0
mV 23	0
Vac 23	0
mV 24	0
Series 9125 Operations Manual	53

Field	Factory Default Value
Vac 24	0
mV 25	0
Vac 25	0
mV 26	0
Vac 26	0
mV 27	0
Vac 27	0
mV 28	0
Vac 28	0
mV 29	0
Vac 29	0
mV 30	0
Vac 30	0
mV 31	0
Vac 31	0
mV 32	0
Vac 32	0
Alternate PID 1 Setup	
Prop Band (0 for On/Off)	4.0
Reset	0.10
Rate	0.00
Integral Preset	0
High Limit	100
Low Limit	-100
Alternate PID 2 Setup	
Prop Band (0 for On/Off)	4.0
Reset	0.10
Rate	0.00
Integral Preset	0
High Limit	100
Low Limit	-100
Alternate PID 3 Setup	
Prop Band (0 for On/Off)	4.0
Reset	0.10
Rate	0.00
Integral Preset	0
High Limit	100
Low Limit	-100
Alternate PID 4 Setup	
Prop Band (0 for On/Off)	4.0
Reset	0.10
Rate	0.00
Series 9125 Operations Manual	54

Field	Factory Default Value
Integral Preset	0
High Limit	100
Low Limit	-100
Alternate PID 5 Setup	
Prop Band (0 for On/Off)	4.0
Reset	0.10
Rate	0.00
Integral Preset	0
High Limit	100
Low Limit	-100
Alternate PID 6 Setup	
Prop Band (0 for On/Off)	4.0
Reset	0.10
Rate	0.00
Integral Preset	0
High Limit	100
Low Limit	-100
Alternate PID 7 Setup	
Prop Band (0 for On/Off)	4.0
Reset	0.10
Rate	0.00
Integral Preset	0
High Limit	100
Low Limit	-100
Alternate PID 8 Setup	
Prop Band (0 for On/Off)	4.0
Reset	0.10
Rate	0.00
Integral Preset	0
High Limit	100
Low Limit	-100
Alternate PID 9 Setup	
Prop Band (0 for On/Off)	4.0
Reset	0.10
Rate	0.00
Integral Preset	0
High Limit	100
Low Limit	-100
Alternate PID 10 Setup	
Prop Band (0 for On/Off)	-3276.8
Reset	-327.68
Rate	-327.68

Field	Factory Default Value
Integral Preset	-32768
High Limit	-32768
Low Limit	-32768
Alternate PID 11 Setup	
Prop Band (0 for On/Off)	-3276.8
Reset	-327.68
Rate	-327.68
Integral Preset	-32768
High Limit	-32768
Low Limit	-32768
Alternate PID 12 Setup	
Prop Band (0 for On/Off)	-3276.8
Reset	-327.68
Rate	-327.68
Integral Preset	-32768
High Limit	-32768
Low Limit	-32768
Alternate PID 13 Setup	
Prop Band (0 for On/Off)	-3276.8
Reset	-327.68
Rate	-327.68
Integral Preset	-32768
High Limit	-32768
Low Limit	-32768
Alternate PID 14 Setup	
Prop Band (0 for On/Off)	-3276.8
Reset	-327.68
Rate	-327.68
Integral Preset	-32768
High Limit	-32768
Low Limit	-32768
Alternate PID 15 Setup	
Prop Band (0 for On/Off)	-3276.8
Reset	-327.68
Rate	-327.68
Integral Preset	-32768
High Limit	-32768
Low Limit	-32768
Alternate PID 16 Setup	
Prop Band (0 for On/Off)	-3276.8
Reset	-327.68
Rate	-327.68

	Field
Integral Preset	-32768
High Limit	-32768
Low Limit	-32768
Alternate PID 17 Setup Default Value	
Prop Band (0 for On/Off)	
Reset	-3276.8
Rate	-327.68
Integral Preset	-327.68
High Limit	-32768
Low Limit	-32768
Alternate PID 18 Setup	-32768
Prop Band (0 for On/Off)	
Reset	-3276.8
Rate	-327.68
Integral Preset	0.00
High Limit	0
Low Limit	0
Alternate PID 19 Setup	0
Prop Band (0 for On/Off)	
Reset	0.0
Rate	0.00
Integral Preset	0.00
High Limit	0
Low Limit	0
Alternate PID 20 Setup	00.0
Prop Band (0 for On/Off)	0.00
Reset	157
Rate	0.0
Integral Preset	0.00
High Limit	0.00
Low Limit	0
Alternate PID 21 Setup	0
Prop Band (0 for On/Off)	0
Reset	0.0
Rate	0.00
Integral Preset	0.00
High Limit	Rate
Low Limit	Alternate PID 22 Setup
Prop Band (0 for On/Off)	
Series 9125 Operations Manual	

Field	Factory Default Value
Integral Preset	0
High Limit	0
Low Limit	0
Alternate PID 23 Setup	
Prop Band (0 for On/Off)	0.0
Reset	0.00
Rate	0.00
Integral Preset	0
High Limit	0
Low Limit	0
Alternate PID 24 Setup	
Prop Band (0 for On/Off)	0.0
Reset	0.00
Rate	0.00
Integral Preset	0
High Limit	0
Low Limit	0
Alternate PID 25 Setup	
Prop Band (0 for On/Off)	0.0
Reset	0.00
Rate	0.00
Integral Preset	0
High Limit	0
Low Limit	0
Analog Input 1 Setup	
Input type 0	B
Input type 1	B
Input type 2	B
Input 0 Correction	not used
Input 1 Correction	not used
Input 2 Correction	not used
Input 0 open T/C	up scale
Input 1 open T/C	up scale
Input 2 open T/C	up scale
Analog Input 2 Setup	
Input type 0	B
Input type 1	B
Input type 2	B
Input 0 Correction	not used
Input 1 Correction	not used
Input 2 Correction	not used
Input 0 open T/C	up scale
Series 9125 Operations Manual 158	

Field	Factory Default Value
Input 1 open T/C	up scale
Input 2 open T/C	up scale
Analog Input 3 Setup	
Input type 0	B
Input type 1	B
Input type 2	B
Input 0 Correction	not used
Input 1 Correction	not used
Input 2 Correction	not used
Input 0 open T/C	up scale
Input 1 open T/C	up scale
Input 2 open T/C	up scale
Analog Input 4 Setup	
Input type 0	B
Input type 1	B
Input type 2	B
Input 0 Correction	not used
Input 1 Correction	not used
Input 2 Correction	not used
Input 0 open T/C	up scale
Input 1 open T/C	up scale
Input 2 open T/C	up scale
Analog Input 5 Setup	
Input type 0	B
Input type 1	B
Input type 2	B
Input 0 Correction	not used
Input 1 Correction	not used
Input 2 Correction	not used
Input 0 open T/C	up scale
Input 1 open T/C	up scale
Input 2 open T/C	up scale
Analog Input 6 Setup	
Input type 0	B
Input type 1	B
Input type 2	B
Input 0 Correction	not used
Input 1 Correction	not used
Input 2 Correction	not used
Input 0 open T/C	up scale
Input 1 open T/C	up scale
Input 2 open T/C	up scale

Field	
Analog Input 7 Setup	
Input type 0	B
Input type 1	B
Input type 2	B
Input 0 Correction	not used
Input 1 Correction	not used
Input 2 Correction	not used
Input 0 open T/C	up scale
Input 1 open T/C	up scale
Input 2 open T/C	up scale
Analog Input 8 Setup	
Input type 0	B
Input type 1	B
Input type 2	B
Input 0 Correction	not used
Input 1 Correction	not used
Input 2 Correction	not used
Input 0 open T/C	up scale
Input 1 open T/C	up scale
Input 2 open T/C	up scale
ADAM Offset	
Enable offsets for SSi AIB	no
Input 1	0.0
Input 2	0.0
Input 3	0.0
Input 4	0.0
Input 5	0.0
Input 6	0.0
Input 7	0.0
Input 8	0.0
Input 9	0.0
Input 10	0.0
Input 11	0.0
Input 12	0.0
Input 13	0.0
Input 14	Input 20
Input 15	Input 16
Input 17	Input 8

	Field
Input 21	0.0
Input 22	0.0
Input 23	0.0
Input 24	0.0
Input 25	0.0
Input 26	0.0
Input 27	0.0
Input 28	0.0
Input 29	0.0
Input 30	0.0
Input 31	0.0
Input 32	0.0
Input 33	0.0
Input 34	0.0
Input 35	0.0
Input 36	0.0
Input 37	0.0
Input 38	0.0
Input 39	0.0
Input 40	0.0
Input 0 Correction	not used
Input 1 Correction	not used
Input 2 Correction	not used
Input 3 Correction	not used
Input 4 Correction	not used
Input 5 Correction	not used
Input 6 Correction	not used
Input 7 Correction	not used
Input 8 Correction	not used
Input 9 Correction	not used
Input 10 Correction	not used
Input 11 Correction	not used
Input 12 Correction	not used
Input 13 Correction	not used
Input 14 Correction	not used
Input 15 Correction	not used
Input 16 Correction	not used
Input 17 Correction	Input 18 Correction
Input 19 Correction	Input 20 Correction
Input 21 Correction	not
Sere 92	

Field	Factory Default Value
Input 22 Correction	not used
Input 23 Correction	not used
Input 24 Correction	not used
Input 25 Correction	not used
Input 26 Correction	not used
Input 27 Correction	not used
Input 28 Correction	not used
Input 29 Correction	not used
Input 30 Correction	not used
Input 31 Correction	not used
Input 32 Correction	not used
Input 33 Correction	not used
Input 34 Correction	not used
Input 35 Correction	not used
Input 36 Correction	not used
Input 37 Correction	not used
Input 38 Correction	not used
Input 39 Correction	not used
Auxiliary Setpoint Configuration	
Retrans to Slave 1	Off
Retrans to Slave 2	Off
Retrans to Slave 3	Off
Setpoint Offset SI 1	0
Setpoint Offset SI 2	0
Setpoint Offset SI 3	0
Setpoint Delay SI 1	0
Setpoint Delay SI 2	0
Setpoint Delay SI 3	0
Generic Instrument Configuration	
Instrument 1 Register Read 1	0
Instrument 1 Count 1	0
Instrument 1 Storage 1	0
Instrument 1 Register Read 2	0
Instrument 1 Count 2	0
Instrument 1 Storage 2	0
Instrument 1 Register Read 3	0
Instrument 1 Count 3	0
Instrument 1 Storage 3	0
Instrument 1 Register Read 4	0
Instrument 1 Count 4	0
Instrument 1 Storage 4	0
Instrument 1 PV Memory	0

Field	
Instrument 1 PV Register	0
Instrument 1 PV In Scale	0
Instrument 1 PV Out Scale	0
Instrument 1 SP Memory	0
Instrument 1 SP Register	0
Instrument 1 SP In Scale	0
Instrument 1 SP Out Scale	0
Instrument 1 Output Memory	0
Instrument 1 Output Register	0
Instrument 1 Output In Scale	0
Instrument 1 Output Out Scale	0
Instrument 2 Register Read 1	0
Instrument 2 Count 1	0
Instrument 2 Storage 1	0
Instrument 2 Register Read 2	0
Instrument 2 Count 2	0
Instrument 2 Storage 2	0
Instrument 2 Register Read 3	0
Instrument 2 Count 3	0
Instrument 2 Storage 3	0
Instrument 2 Register Read 4	0
Instrument 2 Count 4	0
Instrument 2 Storage 4	0
Instrument 2 PV Memory	0
Instrument 2 PV Register	0
Instrument 2 PV In Scale	0
Instrument 2 PV Out Scale	0
Instrument 2 SP Memory	0
Instrument 2 SP Register	0
Instrument 2 SP In Scale	0
Instrument 2 SP Out Scale	0
Instrument 2 Output Memory	0
Instrument 2 Output Register	0
Instrument 2 Output In Scale	Instrument 2 Output Out Scale
Instrument 3 Register Read 1	Instrument 3 Register Read 3
Instrument 3 Count 1	Instrument 3 Storage 1
Instrument 3 Register Read 2	0
Instrument 3 Count 2	Otorage 2
Its	0

Field	Factory Default Value
Instrument 3 Count 3	0
Instrument 3 Storage 3	0
Instrument 3 Register Read 4	0
Instrument 3 Count 4	0
Instrument 3 Storage 4	0
Instrument 3 PV Memory	0
Instrument 3 PV Register	0
Instrument 3 PV In Scale	0
Instrument 3 PV Out Scale	0
Instrument 3 SP Memory	0
Instrument 3 SP Register	0
Instrument 3 SP In Scale	0
Instrument 3 SP Out Scale	0
Instrument 3 Output Memory	0
Instrument 3 Output Register	0
Instrument 3 Output In Scale	0
Instrument 3 Output Out Scale	0
Instrument 4 Register Read 1	0
Instrument 4 Count 1	0
Instrument 4 Storage 1	0
Instrument 4 Register Read 2	0
Instrument 4 Count 2	0
Instrument 4 Storage 2	0
Instrument 4 Register Read 3	0
Instrument 4 Count 3	0
Instrument 4 Storage 3	0
Instrument 4 Register Read 4	0
Instrument 4 Count 4	0
Instrument 4 Storage 4	0
Instrument 4 PV Memory	0
Instrument 4 PV Register	0
Instrument 4 PV In Scale	0
Instrument 4 PV Out Scale	0
Instrument 4 SP Memory	0
Instrument 4 SP Register	0
Instrument 4 SP In Scale	0
Instrument 4 SP Out Scale	0
Instrument 4 Output Memory	0
Instrument 4 Output Register	0
Instrument 4 Output In Scale	0
Instrument 4 Output Out Scale	0
Instrument 5 Register Read 1	0
Instrument 5 Count 1	0
Instrument 5 Storage 1	0
Instrument 5 Register Read 2	0
Instrument 5 Count 2	0
Instrument 5 Storage 2	0
Instrument 5 Register Read 3	0
Instrument 5 Count 3	0
Instrument 5 Storage 3	0
Instrument 5 Register Read 4	0

Field	Factory Default Value
Instrument 5 Count 4	0
Instrument 5 Storage 4	0
Instrument 5 PV Memory	0
Instrument 5 PV Register	0
Instrument 5 PV In Scale	0
Instrument 5 PV Out Scale	0
Instrument 5 SP Memory	0
Instrument 5 SP Register	0
Instrument 5 SP In Scale	0
Instrument 5 SP Out Scale	0
Instrument 5 Output Memory	0
Instrument 5 Output Register	0
Instrument 5 Output In Scale	0
Instrument 5 Output Out Scale	0
Instrument 6 Register Read 1	0
Instrument 6 Count 1	0
Instrument 6 Storage 1	0
Instrument 6 Register Read 2	0
Instrument 6 Count 2	0
Instrument 6 Storage 2	0
Instrument 6 Register Read 3	0
Instrument 6 Count 3	0
Instrument 6 Storage 3	0
Instrument 6 Register Read 4	0
Instrument 6 Count 4	0
Instrument 6 Storage 4	0
Instrument 6 PV Memory	0
Instrument 6 PV Register	0
Instrument 6 PV In Scale	0
Instrument 6 PV Out Scale	0
Instrument 6 SP Memory	0
Instrument 6 SP Register	0
Instrument 6 SP In Scale	0
Instrument 6 SP Out Scale	0
Instrument 6 Output Memory	0
Instrument 6 Output Register	0
Instrument 6 Output In Scale	0
Instrument 6 Output Out Scale	0
Instrument 7 Register Read 1	0
Instrument 7 Count 1	0
Instrument 7 Storage 1	0
Instrument 7 Register Read 2	0
Instrument 7 Count 2	0
Instrument 7 Storage 2	0
Instrument 7 Register Read 3	0
Instrument 7 Count 3	0
Instrument 7 Storage 3	0
Instrument 7 Register Read 4	0
Instrument 7 Count 4	0
Instrument 7 Storage 4	0

Field	Factory Default Value
Instrument 7 PV Memory	0
Instrument 7 PV Register	0
Instrument 7 PV In Scale	0
Instrument 7 PV Out Scale	0
Instrument 7 SP Memory	0
Instrument 7 SP Register	0
Instrument 7 SP In Scale	0
Instrument 7 SP Out Scale	0
Instrument 7 Output Memory	0
Instrument 7 Output Register	0
Instrument 7 Output In Scale	0
Instrument 7 Output Out Scale	0
Instrument 8 Register Read 1	0
Instrument 8 Count 1	0
Instrument 8 Storage 1	0
Instrument 8 Register Read 2	0
Instrument 8 Count 2	0
Instrument 8 Storage 2	0
Instrument 8 Register Read 3	0
Instrument 8 Count 3	0
Instrument 8 Storage 3	0
Instrument 8 Register Read 4	0
Instrument 8 Count 4	0
Instrument 8 Storage 4	0
Instrument 8 PV Memory	0
Instrument 8 PV Register	0
Instrument 8 PV In Scale	0
Instrument 8 PV Out Scale	0
Instrument 8 SP Memory	0
Instrument 8 SP Register	0
Instrument 8 SP In Scale	0
Instrument 8 SP Out Scale	0
Instrument 8 Output Memory	0
Instrument 8 Output Register	0
Instrument 8 Output In Scale	0
Instrument 8 Output Out Scale	0
Instrument 9 Register Read 1	0
Instrument 9 Count 1	0
Instrument 9 Storage 1	0
Instrument 9 Register Read 2	0
Instrument 9 Count 2	0
Instrument 9 Storage 2	0
Instrument 9 Register Read 3	0
Instrument 9 Count 3	0
Instrument 9 Storage 3	0
Instrument 9 Register Read 4	0
Instrument 9 Count 4	0
Instrument 9 Storage 4	0
Instrument 9 PV Memory	0
Instrument 9 PV Register	0

Field	Factory Default Value
Instrument 9 PV In Scale	0
Instrument 9 PV Out Scale	0
Instrument 9 SP Memory	0
Instrument 9 SP Register	0
Instrument 9 SP In Scale	0
Instrument 9 SP Out Scale	0
Instrument 9 Output Memory	0
Instrument 9 Output Register	0
Instrument 9 Output In Scale	0
Instrument 9 Output Out Scale	0
Instrument 10 Register Read 1	0
Instrument 10 Count 1	0
Instrument 10 Storage 1	0
Instrument 10 Register Read 2	0
Instrument 10 Count 2	0
Instrument 10 Storage 2	0
Instrument 10 Register Read 3	0
Instrument 10 Count 3	0
Instrument 10 Storage 3	0
Instrument 10 Register Read 4	0
Instrument 10 Count 4	0
Instrument 10 Storage 4	0
Instrument 10 PV Memory	0
Instrument 10 PV Register	0
Instrument 10 PV In Scale	0
Instrument 10 PV Out Scale	0
Instrument 10 SP Memory	0
Instrument 10 SP Register	0
Instrument 10 SP In Scale	0
Instrument 10 SP Out Scale	0
Instrument 10 Output Memory	0
Instrument 10 Output Register	0
Instrument 10 Output In Scale	0
Instrument 10 Output Out Scale	0
Instrument 11 Register Read 1	0
Instrument 11 Count 1	0
Instrument 11 Storage 1	0
Instrument 11 Register Read 2	0
Instrument 11 Count 2	0
Instrument 11 Storage 2	0
Instrument 11 Register Read 3	0
Instrument 11 Count 3	0
Instrument 11 Storage 3	0
Instrument 11 Register Read 4	0
Instrument 11 Count 4	0
Instrument 11 Storage 4	0
Instrument 11 PV Memory	0
Instrument 11 PV Register	0
Instrument 11 PV In Scale	0
Instrument 11 PV Out Scale	0

Field	0
Instrument 11 SP Memory	Factory Default Value
Instrument 11 SP Register	0
Instrument 11 SP In Scale	0
Instrument 11 SP Out Scale	0
Instrument 11 Output Memory	0
Instrument 11 Output Register	0
Instrument 11 Output In Scale	0
Instrument 11 Output Out Scale	0
	0
Instrument 12 Register Read 1	0
Instrument 12 Count 1	0
Instrument 12 Storage 1	0
Instrument 12 Register Read 2	0
Instrument 12 Count 2	0
Instrument 12 Storage 2	0
Instrument 12 Register Read 3	0
Instrument 12 Count 3	0
Instrument 12 Storage 3	0
Instrument 12 Register Read 4	0
Instrument 12 Count 4	0
Instrument 12 Storage 4	0
Instrument 12 PV Memory	0
Instrument 12 PV Register	0
Instrument 12 PV In Scale	0
Instrument 12 PV Out Scale	0
Instrument 12 SP Memory	0
Instrument 12 SP Register	0
Instrument 12 SP In Scale	0
Instrument 12 SP Out Scale	0
Instrument 12 Output Memory	0
Instrument 12 Output Register	0
Instrument 12 Output In Scale	0
Instrument 12 Output Out Scale	0
Instrument 13 Register Read 1	0
Instrument 13 Count 1	0
Instrument 13 Storage 1	0
Instrument 13 Register Read 2	0
Instrument 13 Count 2	0
Instrument 13 Storage 2	0
Instrument 13 Register Read 3	Instrument 13 Count 3

	Field
Instrument 13 SP In Scale	0
Instrument 13 SP Out Scale	0
Instrument 13 Output Memory	0
Instrument 13 Output Register	0
Instrument 13 Output In Salue	
Instrument 13 Output Out Scale	0
Instrument 14 Register Read 1	0
Instrument 14 Count 1	0
Instrument 14 Storage 1	0
Instrument 14 Register Read 2	0
	0
Instrument 14 Count 2	0
Instrument 14 Storage 2	0
Instrument 14 Register Read 3	0
Instrument 14 Count 3	0
Instrument 14 Storage 3	0
Instrument 14 Register Read 4	0
Instrument 14 Count 4	0
Instrument 14 Storage 4	0
Instrument 14 PV Memory	0
Instrument 14 PV Register	0
Instrument 14 PV In Scale	0
Instrument 14 PV Out Scale	0
Instrument 14 SP Memory	0
Instrument 14 SP Register	0
Instrument 14 SP In Scale	0
Instrument 14 SP Out Scale	0
Instrument 14 Output Memory	0
Instrument 14 Output Register	0
Instrument 14 Output In Scale	0
Instrument 14 Output Out Scale	0
Instrument 15 Register Read 1	0
Instrument 15 Count 1	0
Instrument 15 Storage 1	0
Instrument 15 Register Read 2	0
Instrument 15 Count 2	0
Instrument 15 Storage 2	0
Instrument 15 Register Read 3	0
Instrument 15 Count 3	0
Instrument 15 Storage 3	0
Instrument 15 Register Read 4	0
Instrument 15 Count 4	0
Instrument 15 Storage 4	Instrument 15 PV Memory
Instrument 15 PV Register	Instrument 15 PV In Scale
Instrument 15 PV Out Scale	Instrument 15 SP Memory
Instrument 15 SP Register	Instrument 15 SP In Scale
Instrument 15 SP Out Scale	0
	0

Field	0
Instrument 15 Output Memory	Factory Default Value
Instrument 15 Output Register	0
Instrument 15 Output In Scale	0
Instrument 15 Output Out Scale	0
Instrument 16 Register Read 1	0
Instrument 16 Count 1	0
Instrument 16 Storage 1	0
Instrument 16 Register Read 2	0
Instrument 16 Count 2	0
Instrument 16 Storage 2	0
Instrument 16 Register Read 3	0
Instrument 16 Count 3	0
Instrument 16 Storage 3	0
Instrument 16 Register Read 4	0
Instrument 16 Count 4	0
Instrument 16 Storage 4	0
Instrument 16 PV Memory	0
Instrument 16 PV Register	0
Instrument 16 PV In Scale	0
Instrument 16 PV Out Scale	0
Instrument 16 SP Memory	0
Instrument 16 SP Register	0
Instrument 16 SP In Scale	0
Instrument 16 SP Out Scale	0
Instrument 16 Output Memory	0
Instrument 16 Output Register	0
Instrument 16 Output In Scale	0
Instrument 16 Output Out Scale	0
Generic Block Write Table	0
Block Write 1 Instrument	0
Block Write 1 Interval	0
Block Write 1 Data Start	0
Block Write 1 Data Target	0
Block Write 1 Count	0
Block Write 2 Instrument	0
Block Write 2 Interval	0
Block Write 2 Data Start	0
Block Write 2 Data Target	Block Write 2 Count
Block Write 3 Instrument	Block Write 3 Interval
Block Write 3 Data Start	Block Write 3 Data Target
Block Write 3 Count	Block Write 4 Instrument
Block Write 4 Interval	Block Write 4 Data Start
Block Write 4 Data Target	Block Write 4 Count
Block Write 5 Instrument	0
	0

	Field
	0
Block Write 5 Interval	0
Block Write 5 Data Start	0
Block Write 5 Data Target	0
Block Write 5 Count	0
Block Write 6 Instrument	0
Block Write 6 Interval	0
Block Write 6 Data Start	0
Block Write 6 Data Target	0
Block Write 6 Count	0
Block Write 7 Instrument	0
Block Write 7 Interval	0
Block Write 7 Data Start	0
Block Write 7 Data Target	0
Block Write 7 Count	0
Block Write 8 Instrument	0
Block Write 8 Interval	0
Block Write 8 Data Start	0
Block Write 8 Data Target	0
Block Write 8 Count	0
Block Write 9 Instrument	0
Block Write 9 Interval	0
Block Write 9 Data Start	0
Block Write 9 Data Target	0
Block Write 9 Count	0
Block Write 10 Instrument	0
Block Write 10 Interval	0
Block Write 10 Data Start	0
Block Write 10 Data Target	0
Block Write 10 Count	0
Block Write 11 Instrument	0
Block Write 11 Interval	0
Block Write 11 Data Start	0
Block Write 11 Data Target	0
Block Write 11 Count	0
Block Write 12 Instrument	0
Block Write 12 Interval	0
Block Write 12 Data Start	0
Block Write 12 Data Target	Block Write 12 Count
Block Write 13 Instrument	Olock Write 13 Interval
Block Write 13 Data Start	Block Write 13 Data Target
Block Write 13 Count	Block Write 14 Instrument
Block Write 14 Interval	Block Write 14 Data Start
Block Write 14 Data Target	Block Write 14 Count
Block Write 15 Instrument	0

Field	Factory Default Value
Block Write 15 Interval	0
Block Write 15 Data Start	0
Block Write 15 Data Target	0
Block Write 15 Count	0
Block Write 16 Instrument	0
Block Write 16 Interval	0
Block Write 16 Data Start	0
Block Write 16 Data Target	0
Block Write 16 Count	0
Generic IP Address Table	
IP Address 1 Octet 1	0
IP Address 1 Octet 2	0
IP Address 1 Octet 3	0
IP Address 1 Octet 4	0
IP Address 1 Port	0
IP Address 2 Octet 1	0
IP Address 2 Octet 2	0
IP Address 2 Octet 3	0
IP Address 2 Octet 4	0
IP Address 2 Port	0
IP Address 3 Octet 1	0
IP Address 3 Octet 2	0
IP Address 3 Octet 3	0
IP Address 3 Octet 4	0
IP Address 3 Port	0
IP Address 4 Octet 1	0
IP Address 4 Octet 2	0
IP Address 4 Octet 3	0
IP Address 4 Octet 4	0
IP Address 4 Port	0
IP Address 5 Octet 1	0
IP Address 5 Octet 2	0
IP Address 5 Octet 3	0
IP Address 5 Octet 4	0
IP Address 5 Port	0
IP Address 6 Octet 1	0
IP Address 6 Octet 2	0
IP Address 6 Octet 3	0
IP Address 6 Octet 4	0
IP Address 6 Port	0
IP Address 7 Octet 1	0
IP Address 7 Octet 2	0
IP Address 7 Octet 3	0
IP Address 7 Octet 4	0
IP Address 7 Port	0
IP Address 8 Octet 1	0
IP Address 8 Octet 2	0
IP Address 8 Octet 3	0
IP Address 8 Octet 4	0
IP Address 8 Port	0

Field	Factory Default Value
IP Address 9 Octet 1	0
IP Address 9 Octet 2	0
IP Address 9 Octet 3	0
IP Address 9 Octet 4	0
IP Address 9 Port	0
IP Address 10 Octet 1	0
IP Address 10 Octet 2	0
IP Address 10 Octet 3	0
IP Address 10 Octet 4	0
IP Address 10 Port	0
IP Address 11 Octet 1	0
IP Address 11 Octet 2	0
IP Address 11 Octet 3	0
IP Address 11 Octet 4	0
IP Address 11 Port	0
IP Address 12 Octet 1	0
IP Address 12 Octet 2	0
IP Address 12 Octet 3	0
IP Address 12 Octet 4	0
IP Address 12 Port	0
IP Address 13 Octet 1	0
IP Address 13 Octet 2	0
IP Address 13 Octet 3	0
IP Address 13 Octet 4	0
IP Address 13 Port	0
IP Address 14 Octet 1	0
IP Address 14 Octet 2	0
IP Address 14 Octet 3	0
IP Address 14 Octet 4	0
IP Address 14 Port	0
IP Address 15 Octet 1	0
IP Address 15 Octet 2	0
IP Address 15 Octet 3	0
IP Address 15 Octet 4	0
IP Address 15 Port	0
IP Address 16 Octet 1	0
IP Address 16 Octet 2	0
IP Address 16 Octet 3	0
IP Address 16 Octet 4	0
IP Address 16 Port	0
My node	6
PLC node	1
PLC read table	13
PLC write table	12
PLC intermessage delay (ms)	0
9205 Write, offset 0	0
9205 Write, offset 1	0
9205 Write, offset 2	0
9205 Write, offset 3	0

Field	Factory Default Value
9205 Write, offset 4	0
9205 Write, offset 5	0
9205 Write, offset 6	0
9205 Write, offset 7	0
9205 Write, offset 8	0
9205 Write, offset 9	0
9205 Write, offset 10	0
9205 Write, offset 11	0
9205 Write, offset 12	0
9205 Write, offset 13	0
9205 Write, offset 14	0
9205 Write, offset 15	0
9205 Write, offset 16	0
9205 Write, offset 17	0
9205 Write, offset 18	0
9205 Write, offset 19	0
9205 Write, offset 20	0
9205 Write, offset 21	0
9205 Write, offset 22	0
9205 Write, offset 23	0
9205 Write, offset 24	0
9205 Read, offset 0	0
9205 Read, offset 1	0
9205 Read, offset 2	0
9205 Read, offset 3	0
9205 Read, offset 4	0
9205 Read, offset 5	0
9205 Read, offset 6	0
9205 Read, offset 7	0
9205 Read, offset 8	0
9205 Read, offset 9	0
9205 Read, offset 10	0
9205 Read, offset 11	0
9205 Read, offset 12	0
9205 Read, offset 13	0
9205 Read, offset 14	0
9205 Read, offset 15	0
9205 Read, offset 16	0
9205 Read, offset 17	0
9205 Read, offset 18	0
9205 Read, offset 19	0
9205 Read, offset 20	0
9205 Read, offset 21	0
9205 Read, offset 22	0
9205 Read, offset 23	0
9205 Read, offset 24	0

Appendix C-9125 Instrument Alarms

This appendix provides a list of alarms programmed into the 9125 controller. The table below provides the alarm name, alarm text (as presented in Configurator), the condition(s) under which the alarm is generated, and information on user-accessible settings that affect the triggering of the alarm.

Alarm Description	Register/Bit Location	Type	Values	Alarm Condition(s)	Applicable User- Configurable Setting(s)
Alarm 1	$141 / 1$	Main			
Alarm 2	$141 / 2$	Main			
Alarm 3	$141 / 3$	Main			
TC redundancy alarm	$141 / 7$			Analog input CPU is no longer responding to the 9125 's main CPU.	
Internal System Error	$141 / 8$				
TC Check 1->2 out of band	$141 / 9$				
TC Check 1->3 out of band	$141 / 10$	Burnoff			
TC Check 2->3 out of band	$141 / 11$	Burnoff			
TC rise too great	$163 / 0$	Burnoff			
mV insufficient drop	$163 / 1$	Burnoff			
slow recovery	$163 / 2$	PLC			
impedance too high	$163 / 3$	$2980-2989$			
PLC Alarms (custom)					

Revision History

Rev.		Description		Date	MCO \#
New	First release				

