Super**Systems** # HB1000 Series Thermal Barrier Operations Manual Super Systems Inc. 7205 Edington Drive Cincinnati, OH 45249 513-772-0060 Fax: 513-772-9466 www.supersystems.com Super Systems Inc. USA Office Corporate Headquarters 7205 Edington Drive Cincinnati, OH 45249 Phone: (513) 772-0060 Phone: (513) 772-0060 http://www.supersystems.com Super Systems Europe Units 3 & 4, 17 Reddicap Trading Estate, Sutton Coldfield, West Midlands B75 7BU UNITED KINGDOM Phone: +44 (0) 121 329 2627 http://www.supersystemseurope.com Super Systems México Sistemas Superiores Integrales S de RL de CV Calle 3 Int.: 11. Zona Ind. Benito Juarez Querétaro, Qro. Méx. C.P.: 76120 > Phone: +52 (442) 210 2459 http://www.supersystems.com.mx Super Systems China No. 335 XianXia Road Room 308 Shanghai, CHINA 200336 Phone: +86 21 5206 5701/2 http://www.supersystems.com Super Systems Inc. Page 2 of 58 # **Table of Contents** | Overview | 5 | |---|--------------| | Electronics Component | 5 | | Data Logger Electronics Specifications | 7 | | Thermal Barrier | | | Elements of the Thermal Barrier | 8 | | Thermal Barrier Specifications | | | Guidelines for Thermocouple Wire Sheath | 10 | | Using the Thermal Barrier with the Data Logging Electronics | 10 | | Replacing Wear Strips | 12 | | Getting Started | 13 | | HB1000 Software | 15 | | HB1000 Menu | 15 | | Install Driver | 1 <i>6</i> | | Device Settings | 17 | | Calibrations | 18 | | Zero Calibration | 18 | | Span Calibration | 19 | | T/C Trim Calibration | 19 | | Cold Junction Calibration | | | SDS Reporter Software | 21 | | Menu | 21 | | Report Properties Tab | | | Report | | | Survey Parameters | 23 | | Survey Details | 24 | | Thermocouples | | | Furnace | | | Controller | | | User Defined | | | Comparison Check | | | Chart Tab | | | Data Tab | | | File Menu | 31 | | File → Save / File → Save As / Save Button 🔢 | 31 | | File → Export | | | File → Print | | | | | | Print Button 🥯 | 33 | | File → Print Preview | | | File → Exit | | | SDS Menu Options | 34 | | SDS → Manage Survey Templates | | | SDS $ ightarrow$ Download Surveys and Data | | | SDS View Real-time Data | | | Options Menu Options | | | Options → Show Labels On Chart | | | Help Menu Options | | | Help → Check for Updates | 37 | | Help → About | | |---|--| | SDS Data Tags | | | Creating a Personalized Template | | | SDS Template Manager | | | Description of Template Manager Screen Tabs | | | Description of Template Manager Screen Fields | | | Line Diagrams | | | Warranty | | | Revision History | | #### Overview SSi's HB1000 Series In-Furnace Data Logging Device provides data gathering capabilities in a unit designed to withstand the stress of monitoring temperature from within a furnace. The thermal barrier is constructed with a stainless steel exterior and insulating components that protect the internal electronics for extended periods of time at temperature. The high accuracy electronics component supports 10 type K thermocouples with a maximum battery life of 40 hours. Using the USB connection, data can be easily imported into SSi's SDS Reporter software for AMS 2750 E compliant reports. #### **IMPORTANT!** The Thermal Barrier and Heat Sink must not be used in atmosphere, under vacuum, or for high pressure quench, unless the product is ordered for that specific application. If the product has not been ordered for the specific application, damage will occur, and the product warranty will be voided. See the Warranty section on page 57 for more specific details on warranty. #### **Electronics Component** The switch on the bottom of the box turns the power on and off. Next to the switch is the USB port. When the electronics are not in use, the unit should be powered off and connected to a computer to charge. Keeping the unit powered off while not in use will drastically improve its battery life. Super Systems Inc. Page 5 of 58 The functions of the LEDs are as follows, starting with the LED **furthest from the switch**: - 1. Yellow LED. Blinking when power is on. Stops blinking but remains lit when connected to a computer via USB, thus charging. - 2. Red LED. Blinking when connected to a computer via USB. - 3. Red LED. Blinking when datalogging. - 4. Green LED. Blinking when data is being transmitted via USB. Super Systems Inc. Page 6 of 58 # Data Logger Electronics Specifications | Accuracy: | ±0.9°F (±0.5°C) | |----------------------------|---| | Resolution: | 0.2°F (0.1°C) | | Maximum Operating Temp: | 158°F [70°C] | | Number of Channels: | 10 | | Trigger Channel: | CH 1 | | Sample Interval: | 1 Second | | Recording Start/Stop Temp: | Set Via USB port | | Memory Type: | Non-Volatile Data Flash | | Data Points: | 786,432 (memory fully loaded)
196,608 (one memory chip loaded) | | Battery Type: | Lithium Polymer | | Max Battery Life: | 40 Hours Between Charges | | Battery Charging: | Via USB Port (or external supply) | | Communications: | Via USB Port | | Data Logger Reset: | Via USB Port | Super Systems Inc. Page 7 of 58 #### Thermal Barrier Figure: HB 1015 unit. HB 1012 unit not pictured. #### **Elements of the Thermal Barrier** Super Systems Inc. Page 8 of 58 There are several guidelines to follow that will ensure the longest life of the thermal barrier: - 1. Do not let the high temperature fabric in the lid and the base rub or abrade against any surface. Keep the cloth facing upwards when the unit is open. - 2. Store the thermal barrier in the pelican case it is shipped in. If it cannot be stored in the pelican case, it should be kept in a dry location. In this case, it is recommended that the thermal barrier be kept inside a plastic bag. - 3. Replace the wear strips with new ones before the high temperature fabric is damaged. The high temperature fabric should not come in contact with the sensor cables. - 4. The start temperature of the thermal barrier should be less than 77° F (25° C). - 5. If possible, keep the barrier unbuckled during storage. - 6. When the thermal barrier has just come out of the furnace and is hot, open the lid and keep the unit on a perforated surface to let it cool down. Handle with high temperature gloves. - 7. Any time the unit is unbuckled, it should be prevented from sliding to reduce wear on the matting. - 8. When placing the upper half on top of the lower half, keep the wear strips clear of the sensor outlet guide. - 9. When locking the thermal barrier, place all four toggle clamp arms into the engagements before pressing the toggle clamps down to lock. Similarly, when unlocking, loosen all four clamp arms before pulling apart from the engagements. - 10. **NEVER EXCEED THE THERMAL CAPACITY (TEMP / TIME CAPACITY).** Refer to chart below. Neither unit should be used at temperature above 1832° F (1000° C) for any amount of time. - 11. After use, the Thermal Barrier must be cooled fully before being used again. Super Systems Inc. Page 9 of 58 #### Thermal Barrier Specifications | Temperature in °F | Temperature in °C | HB 1012 Max
Time at Temp | HB 1015 Max
Time at Temp | |--|-------------------|-----------------------------|-----------------------------| | 482 | 250 | 7hrs 30min | 13 hrs | | 572 | 300 | 5hrs 45min | 10hrs 30min | | 662 | 350 | 4hrs 45min | 8hrs 35 min | | 752 | 400 | 4 hrs | 7hrs 25min | | 842 | 450 | 3hrs 30min | 6hrs 30min | | 932 | 500 | 3hrs 30min | 5hrs 35min | | 1022 | 550 | 2hrs 50min | 5hrs | | 1112 | 600 | 2hrs 30min | 4hrs 40min | | 1202 | 650 | 2hrs 15min | 4hrs 15min | | 1292 | 700 | 2hrs 10min | 4hrs | | 1382 | 750 | 2hrs | 3hrs 45min | | 1472 | 800 | 1hr 50min | 3hrs 30min | | 1562 | 850 | 1hr 45min | 3hrs 15min | | 1652 | 900 | 1hr 45min | 3hrs | | 1742 | 950 | 1hr 30 min | 3hrs | | 1832 | 1000 | 1hr 30 min | 2hrs 50min | | DO NOT OPERATE AT TEMPERATURES ABOVE 1832° F (1000° C) | | | | #### IMPORTANT! If you have a Thermal Barrier that is not on the list, make sure the proper time and temperature quidelines are followed! #### **Guidelines for Thermocouple Wire Sheath** The recommended wire sheath diameter for mineral-insulated thermocouples is 1.6mm. It is also recommended that the wire be Inconel- or Nicrobel-sheathed and terminated with a high temperature miniature plug. #### Using the Thermal Barrier with the Data Logging Electronics - 1. Open the thermal barrier and set the halves next to each other. - 2. Insert the data logger into a plastic/polythene bag. - 3. Set the heat sink up so that the pocket faces upwards, and insert the data logger into the pocket. - 4. Lean the heat sink onto the edge of the thermal barrier as shown in picture 2 and route the thermocouple wires through the sensor outlet guides. Super Systems Inc. Page 10 of 58 5. Place the upper half on top of the lower half, keeping the wear strips clear of the sensor outlet guides. Fasten all four toggle locks. Super Systems Inc. Page 11 of 58 ## Replacing Wear Strips To replace the wear strips, simply unscrew the locking plate and put the new wear strip in place. Screw the locking plate back on. Super Systems Inc. Page 12 of 58 #### **Getting Started** To begin using the HB1000, first load the SDS Reporter software provided with the unit onto a computer. Connect thermocouples to the data logger. Channel one must be connected in order to collect data. The thermocouples can be connected using a mini adaptor. When connecting the thermocouples, the positive side is down and is the smaller of the two terminals. Next, connect the data logging electronics to the computer with a USB cable. Verify that the USB Connection Active LED is blinking red. Instructions for installing the driver for the HB1000 can be found under **Install Driver** on page 16. Assign the on and off data logging temperatures for the unit. For continuous data logging, the on temperature should be set
to 0°F or C and the off temp to 1°F or C. Instructions for setting the on and off temperatures can be found under **Device Settings** on page 17. Thermocouple one controls the on and off status of the data logging; this cannot be assigned to any other thermocouple. Once the on and off temperatures are assigned, disconnect the unit from the computer. If the on temperature is below ambient temperature, the Data Logging In Process LED should be blinking red. At this point, the data logger setup is complete. The data logger can be placed into the heat sink with the thermocouple wires facing out. Please see the section **Using the Thermal Barrier** with the Data Logging Electronics to ensure proper arrangement of the parts. Once the HB1000 has come out of the furnace, pull the electronics component out of the thermal barrier as quickly as possible. The thermal barrier should be handled with heat resistant gloves. After removing the electronics, turn the switch OFF and connect the unit to a computer with a USB to charge. This will discontinue data logging. Keeping the unit turned off or charging when it is not in use will greatly prolong the battery life of the electronics. Before beginning a new survey, the electronics must always first be connected to the computer and scanned by the Uniformity Box software if the device has been turned off. Once the device has been found, it will have the same On and Off temperatures assigned from the previous survey, and it can be disconnected from the computer at that time to begin data logging. #### Downloading a Survey Connect the electronics to the computer with a USB cord. Verify that the USB Connection Active LED is blinking red. To download a survey, go to SDS \rightarrow Download Surveys and Data, and select the unit from the SDS drop down menu. Hit the **Download** button. The program will download every job (survey) on the unit each time this operation is performed. To delete old jobs from the device, use the **Erase Jobs** button on the Device Settings menu. Erasing jobs is discussed further in the **Device Settings** section. Once the jobs are downloaded, close the window. Select File \rightarrow New. The Report Properties tab will open. The first box on this page is labeled Data Sources. Click the button with three dots ____ next to the Data field. This will display the Load Survey Data window. Select the appropriate job; the most recent job performed will be at the top of the list. Once the job is highlighted, a template can be used by clicking the **Attach Template to Survey** button in blue Super Systems Inc. Page 13 of 58 located just below the list of jobs. This will display the Open Template File window with the option to open a local survey template file located on the computer. Hit the **Browse** button, select the appropriate template, and press **Open**. Hit the **Open File** button at the bottom of the Open Template File window. This will display the Select Template window. Highlight the appropriate template, and hit **Ok**. Now, press the **Use** button in the Load Survey Data window. For more information on creating a template, please see the section **SDS Template Manager**. At this point, the data from the job performed as well as the data fields that correspond to the selected template will be populated. Any other necessary information can be entered by clicking through the Report Properties tabs. For more information on this, please see the section SDS Reporter Software. The chart for the survey can be viewed by clicking the Chart tab. To create a report using this job, click the button next to the Report Template field, located on the Report tab of Report Properties. Select the appropriate report file, and hit **Open**. Go to File \rightarrow Print Preview \rightarrow Print Preview Report to view the report. The report can be printed from here. For more information on creating a Report Template, please see the section **Creating a Personalized Template**. Super Systems Inc. Page 14 of 58 #### **HB1000 Software** The HB1000 software provides a simple interface for accessing data collected by the uniformity box. #### HB1000 Menu The HB1000 Menu consists of three buttons: Calibrations, Device Settings, and Install Driver. At any point, clicking the red X in the top right corner will bring the operator back to this menu screen. Super Systems Inc. Page 15 of 58 #### **Install Driver** First, connect the unit to the computer via a USB cord. Select **Install Driver**. This will bring up the following screen: Click the Start Driver Installation button. This will allow the software to recognize the device. There will be messages stating the driver installation has started and has been successful. Click the red X to return to the Menu. Super Systems Inc. #### **Device Settings** Pressing the Scan for Devices button will display a list of the devices on the network in the top left corner. If the device has been given a serial number, this is how it will be displayed, along with the port it is communicating to. Select the appropriate device. The settings displayed will include the Device Time, the On Temp, the Off Temp, and the Serial Number. On the right hand side of the Device Settings window, there are four buttons which allow the operator to change the settings. Channel one will always control the on and off temperature. The device must be selected before changes can be made. The **Set Time** button will change the time on the device to match the time on the computer it is connected to. The **Set On Trigger** button will change the On Temp for the HB1000. When thermocouple one, which controls data logging, reaches this temperature, the controller will begin data logging. The **Set Off Trigger** button will change the Off Temp for the controller. When thermocouple one reaches the off temp, a timer will count down from 10 minutes. After this timer is finished, once the temperature falls below the off temp, the data logger will stop recording data. For continuous data recording, it is recommended that the on temp be set to 0° and the off temp be set to 1°. The **Set Serial Number** button allows the operator to name the device. This can be a name using letters, numbers, or a combination of the two. The **Erase All Jobs** button will erase all of the data from the device. This will erase all jobs from the device; it is not possible to choose only certain jobs to erase and to keep others. Erasing the jobs will take 60 seconds, and a timer will count down during this operation. The **Degree Type** allows you to set the unit of temperature measurement – °F or °C – used for calibration. #### **Calibrations** There are four types of calibrations for the HB1000. All of the thermocouple channels must be calibrated at the same time. #### Zero Calibration To calibrate the voltage properly, both a zero and a span calibration must be performed. For zero and span calibrations, only regular copper wire should be used – not T/C wire. Connect each positive input to its corresponding negative input or connecting a calibrator and outputting 0.0 volts DC (VDC). Once the connections are made, press the **Start Calibration** button. Theoretically, this should yield 0.0 VDC, however many times it is close but not quite 0. Now a span calibration should be performed. Super Systems Inc. Page 18 of 58 #### Span Calibration Following a zero calibration, perform a span calibration. For zero and span calibrations, only regular copper wire should be used - not T/C wire. perform a span calibration, hook up a calibrator to each input. From the calibrator, output 72 millivolts. Set the Calibration Value to 72 mV on the computer software. The voltage range should be set to m۷ for a type thermocouple. Press the **Start** Calibration button. More often than not, the scaled voltage will read something slightly off from 72 mV, for instance 72.09 instead of 72. voltage is then calibrated according to the results of the zero and span calibrations. #### T/C Trim Calibration For the T/C Trim calibration, T/C wire should be used. The T/C trim calibration is performed by connecting a thermocouple calibration device to each input and outputting a trim temperature that is used be equal to the expected operating temperature. example, the calibration could be completed using an output temperature of 1700°F. After the zero, and span calibrations, the temperature may read about 1701.5°F instead. This type calibration should be used in lieu of the regular cold junction calibration unless the cold junction temperatures are reading a temperature that is much too high for what the ambient temperature could possibly be. A cold junction calibration can be used in this instance when need be, but the T/C Trim Calibration is preferred. Super Systems Inc. Page 19 of 58 #### **Cold Junction Calibration** The purpose of the Cold Junction Calibration is to calibrate the ambient temperature at each of the 10 connectors. The ambient temperature can be determined by holding a probe near the connectors and reading that value. The operator should then enter the ambient temperature into the box labeled Calibration Value. Press the Start Calibration button to run a Cold Junction calibration. Each input will then be reading the ambient temperature. A message will be displayed stating that the calibration is successful. Super Systems Inc. Page 20 of 58 #### SDS Reporter Software #### Menu When the SDS Reporter software is started, the Menu screen is displayed. The four menu options to choose from are: File, SDS, Options and Help. There are four buttons to choose from: New , Open , Save , and Print . The Open menu option will allow the user to choose an existing report from a common Windows Open dialog box. The software will open the dialog box in the "SDSReports" folder (typically -C:\SSi\SDS\SDSReports) for existing reports (.SDSReport) to open. The New option allows the user to create a new report that will include the
report properties, the trend chart, and the T/C data. Of these three tabs, the selected tab will be in Red when it is active. #### **Report Properties Tab** The Report Properties tab contains several tabs, which in turn contain the information that makes up the report. #### Report The first tab is the Report tab which contains the data to use for the report, the report template to use, the report heading or title, the survey results, and any notes about the report. Clicking on the open box, ____, next to the Data field will display a screen from which the user can select the interval time (ten seconds, twenty seconds, thirty seconds, one minute, two minutes, or five minutes) and also the specific survey to use. This screen will only display survey data that has already been downloaded. To download surveys, choose SDS \rightarrow Download Surveys and Data. This is explained further under the *SDS Menu Options* section. Super Systems Inc. Page 22 of 58 The default interval is one minute. Select the survey to use and click the **Use** button. Information included with the data sources is: Template Name, [Company Name - Furnace Id], (Survey box Serial number), and the date/time range of the survey data. Clicking on the open box next to the Report Template field will open a dialog box from which the user can select the specific report template to use for the report. The software will open the dialog box in the SDSReportTemplates folder (typically C:\SSi\SDS\ReportTemplates) for existing report templates to use. The Report Heading / Title field is for the heading or title of the report and the Survey Results (Pass/Fail) field is for the results of the survey. The Notes field is for any general notes for the report. Note that the Load Survey Data window provides the ability to attach a template to a survey. To do this, click on **Attach Template to Survey** and select the template you want to use before clicking on **Use**. #### **Survey Parameters** The Survey Parameters tab contains: the survey tolerance, the survey setpoint, the overtemp setpoint, the simulated load in pounds, the microns, and the option of heating or cooling. Super Systems Inc. Page 23 of 58 #### Survey Details The Survey Details tab contains the company name, the survey start date, the survey duration, the actual duration of the survey, the survey specification(s), who performed the survey, who approved the survey, the date range for the survey, and the due date of the next survey. #### Thermocouples This tab contains the information about the thermocouple settings and it also lists the active thermocouples. The information in the thermocouple settings includes: the temperature type (F or C), the number of thermocouples, the number of T/Cs used in the report, the thermocouple type, the thermocouple gauge, the thermocouple spool number, the person who performed the calibration, the date the thermocouple was calibrated, and the thermocouple spool correction factor. Clicking on the **Change** button will allow the user to change the spool correction. All values displayed to the users are corrected. That means if there is a defined offset for the T/C Spool and a channel offset, the user will be shown the net result of those offsets into the value displayed. There are checkboxes for a possible forty thermocouples, but only the active thermocouples will have checks in the checkboxes. Clicking on the **Define Control T/C** link will allow the user to select the T/C or T/Cs that will be the control T/C(s). The operator can select any of the thermocouples to be the control T/C(s) and provide an optional description for that T/C. Clicking on the Accept button will set the selected control T/C(s). Once a control T/C(s) has been selected, the T/C's number will be in Red on the "Active Thermocouples" section of the Thermocouples tab. The thermocouple(s) that is identified as the control T/C will not be used for the T/C summary when identifying hottest and coldest channels. Clicking on the View Offsets used in Survey link will display a list of the offsets that were used on the survey. All values that are displayed to the users are corrected values. That means the Offsets defined for these T/Cs have already been incorporated into the value the operator would see. If there is a value for the T/C Spool Correction Factor, that value will also be incorporated, providing a corrected view for the user. Note: Checking or unchecking T/Cs on the Thermocouples Tab will affect the T/Cs plotted on the Chart Tab. Super Systems Inc. Page 25 of 58 #### Survey Box The next tab is the Survey Box tab, which contains information about the survey box itself, such as the make and model, the serial number, the person who calibrated the survey box, and the calibration date. #### **Furnace** The Furnace tab contains the furnace ID, the make and model of the furnace, the furnace type, the furnace use, the furnace's operating range, the furnace dimensions, the furnace class, and an optional image of the furnace. Clicking on the open box next the image frame will open a dialog box where the user can search for an image of the furnace to display. Super Systems Inc. Page 26 of 58 #### Controller This tab contains the Controller manufacturer, the controller model, and the instrument type in the Temperature Controller Settings. This tab also contains the PID Settings: cycle time, dead band, output limit, PB (Gain), rate, and reset. #### **User Defined** This tab contains twenty fields that can be defined by the user and included in the report. Super Systems Inc. Page 27 of 58 To create a user defined field, click on the **Modify User Defined Fields**. This will display a screen that will allow the user to edit the fields. The user can type in the name or description of the field and click the **Save** button. These inputs can then be implemented in the report using the SDS Data Tags. #### Comparison Check Super Systems Inc. Page 28 of 58 The information for the comparison check is generated from several of the Report Properties fields. | Report Field | <u>Location in Tabs</u> | |--|---| | Time | Chart Start Time | | Comparison Test T/C
Spool Number | Middle Left of Comparison
Check | | Comparison T/C
Number | Top Right of Comparison
Check | | Comparison T/C Wire
Correction Factor | Top Right of Comparison
Check | | Comparison
Instrument Correction
Factor | Thermocouples | | Comparison T/C
Temperature Readings | Records the temperature of the Comparison T/C | | Adjacent T/C Number for Comparison Check | Top Right of Comparison
Check | | Adjacent T/C Wire
Correction | Thermocouples, click View Offsets Used in Survey button* | | Adjacent Instrument
Correction Factor | Thermocouples, click View Offsets Used in Survey button | | Adjacent T/C
Temperature Readings
for Comparison Check | Records the temperature of Adjacent T/C | | CC Difference | Difference Between
Comparison T/C and
Adjacent T/C temperatures | | Accept/Reject Criteria =
Tolerance of Furnace | Set on Comparison Check
Page, Middle Right | | Accept/Reject | Dependent on A/R Criteria | ^{*}The offsets for the T/C Wire Correction can be adjusted solely for the purpose of the comparison by checking the box on the Comparison Check page labeled **Use Custom Wire Corrections.** A header text and a body text can be put in the report. There are **Preview Report** and **Print Report** buttons in the top left hand corner of the Comparison Check page. Super Systems Inc. Page 29 of 58 #### **Chart Tab** The Chart Tab contains the charted information from the time specified on the survey. When the chart tab is active, the chart toolbar buttons also appear and these buttons can be used to zoom in on a section of the chart, pan the chart up, down, left or right, and refresh the chart back to its original values. The screen will display 2 horizontal lines that represent the high and low temperature tolerance levels based on the setpoint. This display will change based on the tolerance level and setpoint defined in the Report Parameters. Note: checking or unchecking T/Cs on the Chart Tab will affect the Active T/Cs on the Report Properties – Thermocouples tab. #### Data Tab The Data Tab contains the data from each thermocouple for the each interval selected from the Load Survey Data screen. Super Systems Inc. Page 30 of 58 Clicking on the "Round this data off to the nearest degree" link will pop up a message box confirming the action. The rounding only affects imported data. The data in the logged files will still contain data rounded to one decimal place. Clicking the Yes button will round the data. #### File Menu ### File → Save / File → Save As / Save Button 🔙 This will save any changes made to a new or existing report. If an existing file was opened, then the software will automatically save the file without prompting. If a new file was created, then the software will display a common Windows Save dialog box that will allow the user to save the report to the "SDSReports" folder. Once the report has been saved to the "SDSReports" folder, the software will automatically save the file the next time the save command is chosen. Clicking the Save As menu option will automatically bring up the Save dialog box. #### File → Export There are four sub-menu options available for the export function: Export Report to Word Export Report to RTF Export Survey Data to CSV Export to Word - All The Export Report to Word menu option will export the report to a Word document format, which will provide more detail than the standard .rtf file format. When this menu option is clicked, the software will automatically begin to export the report selected to a word document. Once the report has been exported, the new document will be displayed. Note - no save dialog box will be displayed to
the user. Initially, the report is saved as "temp.doc" to the "C:\Temp" directory. The user can rename and save this report to any other desired location. Note - any time this menu option is used, the resulting report will be saved as "temp.doc", so any previous report that has not been re-saved will be lost. The Export Report to RTF menu option will export the report to a rich-text format (RTF). When this menu option is clicked, the software will display a Windows Save dialog box that will save the .rtf file to the "SDSReports" folder. The Export Survey Data to CSV menu option will export all of the survey data (as seen on the Data tab) to a comma-separated value format file. When this menu option is clicked, the software will display a Windows Save dialog box that will save the .csv file to the "SDSReports" folder. The Export to Word - All menu option will export all of the survey's information to a Word file (report data, survey data, eT/C). Super Systems Inc. Page 31 of 58 #### File → Print This menu option is slightly different from the print button. There are five sub-menu options available: **Print Report** Print Survey T/C Data Print Approach T/C Data Print All Print Multiple Surveys The *Print Report* menu option will allow the user to print out a copy of the .SDSReport file. The user will have to select the printer to print the report. The *Print Survey T/C Data* menu option will print out a copy of the T/C data (as seen on the Data tab). The user will have the option to configure the page settings and select a printer to print to. The *Print Approach T/C Data* menu option will allow the user to just print the approach data in a tabular format. The *Print All* menu option will print all of the options – Report, Survey T/C Data, Approach T/C Data – at once. The user will be able to select the printer. All three options will be printed as separate reports. Super Systems Inc. #### Print Multiple Surveys The SDS Reporter software will support the ability to print multiple setpoint survey reports. Note – The software does not support multiple setpoint surveys. The multiple setpoint survey report screen can be accessed by the File → Print → Print Multiple Surveys menu option. Note – When the screen is first displayed, the main SDS Reporter screen will be closed and any unsaved data will be lost. Any unsaved data will need to be saved before printing the multiple setpoint survey report. The Print Multiple Setpoint Survey screen will allow the user to select a report template that utilizes the multiple setpoint survey tags (described below) and up to 5 survey files (.SDSReport). The search buttons - next to each field will allow the user to select the specific report template or survey file for the report. Once the report template and survey files have been selected, the user will be able to export the report to Word by clicking on the Export Word to button. In order to view the multiple setpoints on a survey, the user will need to use the $\{n\}$ tag, where n is the survey number from the *Print Multiple Setpoint Survey* screen. What the $\{n\}$ tag does is tell the report to use the nth survey information for all of the following tags until another $\{n\}$ tag is found. Using the displayed screen as an example, the following could be an excerpt from the template file: - {1} Survey #1 Duration: <SDS:DUR> - {2} Survey #2 Duration: <SDS:DUR> - {3} Survey #3 Duration: <SDS:DUR> Setpoint: <SDS:SP> Max T/C Value: #mT/Cv# {4} Survey #4 Duration: <SDS:DUR> This survey would display the durations for each of the survey files, and it would also display the survey setpoint and max T/C value for survey #3. Notice that the normal data tags are still used. The new tag only tells the software which survey to pull data from. **Note – For single** survey reports, the report template file does not need to be updated. If no $\{n\}$ tag is used, the software will default to the first survey file. On the actual report the $\{n\}$ tag is invisible. When the *Print Multiple Setpoint Survey* screen is closed down, the main SDS Reporter screen will re-open. # Print Button When the user clicks on the Print button, the software will display the print preview screen, which is similar in design and function to the print preview screen on the View Real-time chart. Super Systems Inc. Page 33 of 58 #### File → Print Preview There are three sub-menu options available: Print Preview Report Print Preview Survey T/C Data Print Preview Approach T/C Data Each option will display a print preview of the desired report. #### File → Exit This menu option will exit the application. #### **SDS Menu Options** #### SDS → Manage Survey Templates The Manage Survey Templates menu option will display the SDS Template Manger screen, which will allow a user to add new templates and modify existing templates. See the section SDS Template Manager Screen for a more detailed description of the functions of this screen. #### SDS → Download Surveys and Data The Download Surveys and Data menu option will allow the user to download surveys from a specific instrument. When the menu option is clicked, the software will begin to search for any and all dataloggers located on the network. Super Systems Inc. Page 34 of 58 Any datalogger found on the network will be added to the drop-down list at the top of the screen. If no devices are found, a message box will pop up letting the user know that no devices were found on the network. Check the network connections to verify that any datalogger and computer is properly connected to the network. Select the instrument from which to download the data files from the drop-down list box labeled "SDS:". Note: Currently, the drop-down list will also populate with any Video Recorder data loggers as well. Use caution when selecting the instrument to download data from, since downloading/deleting data from a Video Recorder using the SDS Reporter software could cause undesirable consequences. Under the Options menu, the Download menu option will allow the user to choose to download only data that has been used in surveys, or all of the logged data. The SDS data logger will log data continuously when it is on regardless if a survey is running or not. There will be a check mark next to the menu option selected. The default menu option is Only data used in surveys. All survey data that is captured on the data logger is transferred to the PC using the SDS Reporter software and can be reviewed at any time from that PC. The SDS software will begin to download the survey data once the user has clicked on the "Download" button. The button will read "Abort" while the data files are downloading. If a connection to the device cannot be established, the software will display a message box informing the user. If the user chooses to only download data files used in surveys, and no data files are found, the software will display an error message. Super Systems Inc. Page 35 of 58 The software will display a continuous progress of the download status. Note: since there may be a large number of files to download, this process may take several minutes to complete. When all of the files have been downloaded, the words "Operation Complete" will be at the bottom of the list, and the button at the bottom will read "Download". A message box will also be displayed reading "Operation Complete". Clicking on the **OK** button on the message box will close down the download data screen. Clicking on the "Abort" button will stop the download and close the SDS Data Log Extractor screen. Any files that have already been downloaded will not be erased. #### SDS View Real-time Data The software provides the ability to view real-time values for each of the thermocouple inputs on the HB1000 Series instrument. Generally, this will be done to verify that the connections are working properly. To open the real-time data view, click on the SDS menu and then View Real-time Data; next, select the HB1000 Series instrument for which you want to see real-time values, and click OK. The real-time values will be displayed on screen. Super Systems Inc. Page 36 of 58 #### Options Menu Options #### Options → Show Labels On Chart This is a toggle switch for the application. When checked, this will display the "Begin Survey" label for the survey on the real-time graph. #### **Help Menu Options** #### Help → Check for Updates The Check for Updates menu option will check for updates over the Internet and automatically update the SDS firmware and software. If an update is found, the software will display a message box asking the user for update confirmation. The software will then automatically update the files and restart the application. If no updates are available, then the software will display a message box informing the user. #### Help → About The About menu option displays the SDS Reporter version that is running, and all of the previous versions with any version notes. Super Systems Inc. Page 37 of 58 #### SDS Data Tags SDS Data tags are created so that all of the template information and survey data can automatically be used for the report process. Data that is captured during the survey is summarized to provide the overall results for the report. This can be in the form of a graph, tabular data, text, eT/C. Data tags have been specifically created to address the uniformity requirements for AMS and other standards. Tags address, overshoot, minimum T/C with value, maximum T/C with value, trend data, tabular data, eT/C. An example of an output from the data tags can be seen by opening the Example report from the SDS Recorder provided with the installation. The only data not generated from data tags is the tabular print out of the actual temperatures. This data is generated from the *Survey T/C Data* option and will print all data points that are displayed on the graph between the "start" and "stop" selected by the user in the survey. In the figure below (Output From Data Tags), an
example of the data tags for the graph, survey setpoint, minimum and maximum T/Cs with values and deviation is shown. The data tags used to generate the information below are; <SDS:GRAPH600x400> ## T/C Survey Summary ## Temperature Setpoint: <SDS:SP>°# | Minimum T/C number: #mT/Cn# | Maximum T/C number: #xT/Cn# | | |-----------------------------------|-----------------------------------|--| | Minimum T/C Value: #mT/Cv# | Maximum T/C Value: #xT/Cv# | | | Min deviation from setpoint: #md# | Max deviation from setpoint: #xd# | | Super Systems Inc. Page 39 of 58 | <u>Tag</u> | <u>Description</u> | <u>Usage</u> | |------------------|---|---------------------------------------| | SDS:FILE | The filename the report is saved as | <sds:file></sds:file> | | SDS:PD | The current date when the report is printed | <sds:pd></sds:pd> | | SDS:PT | The current time when the report is printed | <sds:pt></sds:pt> | | SDS:FID | The furnace ID | <sds:fid></sds:fid> | | SDS:FM | Furnace make/model | <sds:fm></sds:fm> | | SDS:FT | Furnace type | <sds:ft></sds:ft> | | SDS:FU | Furnace use | <sds:fu></sds:fu> | | SDS:FD | Furnace dimensions | <sds:fd></sds:fd> | | SDS:FC | Furnace Class | <sds:fc></sds:fc> | | SDS:FOR | Furnace operating range | <sds:for></sds:for> | | SDS:SD | Survey date | <sds:sd></sds:sd> | | SDS:ST | Survey time | <sds:st></sds:st> | | SDS:SDR | Survey date range | <sds:sdr></sds:sdr> | | SDS:DUR | Duration of the survey | <sds:dur></sds:dur> | | SDS:0P | Operator. Survey performed by | <sds:0p></sds:0p> | | SDS:APP | Survey approved by | <sds:app></sds:app> | | SDS:TITLE | The heading, or title, of the report | <sds:title></sds:title> | | SDS:NOTE | Notes for the survey | <sds:note></sds:note> | | SDS:TOL | Survey tolerance / uniformity required | <sds:tol></sds:tol> | | SDS:0TS | Overtemp setpoint | <sds:0ts></sds:0ts> | | SDS:SP | Survey setpoint | <sds:sp></sds:sp> | | SDS:T/CN | Number of thermocouples | <sds:t cn=""></sds:t> | | SDS:T/CT | Thermocouple type | <sds:t ct=""></sds:t> | | SDS:T/CS | Thermocouple spool number | <sds:t cs=""></sds:t> | | SDS:T/CC | Thermocouple calibrated by | <sds:t cc=""></sds:t> | | SDS:T/CCD | Thermocouple calibration date | <sds:t ccd=""></sds:t> | | SDS:T/CCF | Thermocouple spool correction factor | <sds:t ccf=""></sds:t> | | SDS:SDN | Next survey due date | <sds:sdn></sds:sdn> | | SDS:SDSM | Survey box make/model | <sds:sdsm></sds:sdsm> | | SDS:SDSS | Survey box serial number | <sds:sdss></sds:sdss> | | SDS:SDSC | Survey box calibrated by | <sds:sdsc></sds:sdsc> | | SDS:SDSCD | Survey box calibration date | <sds:sdscd></sds:sdscd> | | SDS:SDSCF | Survey box correction factor | <sds:sdscf></sds:sdscf> | | SDS:SPEC | Specifications the survey meets | <sds:spec></sds:spec> | | SDS:INT | Sample interval | <sds:int></sds:int> | | SDS:T | Temperature character – F or C | <sds:t></sds:t> | | SDS:SIM | Simulate load, in pounds | <sds:sim></sds:sim> | | SDS:0VS | Overshoot (Deprecated) | <sds:0vs></sds:0vs> | | SDS:MIC | Microns | <sds:mic></sds:mic> | | SDS:RES | Survey result | <sds:res></sds:res> | | SDS:GRAPH600x400 | Inserts a 600X400 image of the graph | <sds:graph600x400></sds:graph600x400> | | SDS:COM | Company name | <sds:com></sds:com> | | SDS:UDUR | User defined survey duration | <sds:udur></sds:udur> | | SDS:UT/CN | User defined number of thermocouples | <sds:ut cn=""></sds:ut> | | SDS:PCT | PID cycle time | <sds:pct></sds:pct> | | SDS:PDB | PID dead band | <sds:pdb></sds:pdb> | | SDS:POL | PID output limit | <sds:pol></sds:pol> | | | | | ## HB1000 Series Thermal Barrier Operations Manual | SDS:PPB | PID PB (gain) | <sds:ppb></sds:ppb> | |----------|---|-----------------------| | SDS:PR | PID rate | <sds:pr></sds:pr> | | SDS:PRE | PID reset | <sds:pre></sds:pre> | | SDS:CMF | Temperature controller manufacturer | <sds:cmf></sds:cmf> | | SDS:CMA | Temperature controller make/model | <sds:cma></sds:cma> | | SDS:IT | Controller instrument type | <sds:it></sds:it> | | SDS:T/CG | Thermocouple gauge | <sds:t cg=""></sds:t> | | SDS:0V | Overshoot - yes or no | <sds:0v></sds:0v> | | SDS:0D | Outputs T/C and temp if overshoot occurred | d <sds:0d></sds:0d> | | SDS:0VT | Time the overshoot occurred | <sds:0vt></sds:0vt> | | SDS:CTD | Inserts a note regarding the control | <sds:ctd></sds:ctd> | | | Thermocouple. Inserts nothing if no control | | | | Thermocouple was chosen | | | SDS:CTN | Control thermocouple. Inserts "None" if | <sds:ctn></sds:ctn> | | | None is defined | | | °# | °degree type | °# | | SDS:ED | Survey end date | <sds:ed></sds:ed> | | SDS:ET | Survey end time | <sds:et></sds:et> | | SDS:T/CM | Thermocouple map (image) | <sds:t cm=""></sds:t> | | SDS:UD1 | User defined field 1 | <sds:ud1></sds:ud1> | | SDS:UD2 | User defined field 2 | <sds:ud2></sds:ud2> | | SDS:UD3 | User defined field 3 | <sds:ud3></sds:ud3> | | SDS:UD4 | User defined field 4 | <sds:ud4></sds:ud4> | | SDS:UD5 | User defined field 5 | <sds:ud5></sds:ud5> | | SDS:UD6 | User defined field 6 | <sds:ud6></sds:ud6> | | SDS:UD7 | User defined field 7 | <sds:ud7></sds:ud7> | | SDS:UD8 | User defined field 8 | <sds:ud8></sds:ud8> | | SDS:UD9 | User defined field 9 | <sds:ud9></sds:ud9> | | SDS:UD10 | User defined field 10 | <sds:ud10></sds:ud10> | | SDS:UD11 | User defined field 11 | <sds:ud11></sds:ud11> | | SDS:UD12 | User defined field 12 | <sds:ud12></sds:ud12> | | SDS:UD13 | User defined field 13 | <sds:ud13></sds:ud13> | | SDS:UD14 | User defined field 14 | <sds:ud14></sds:ud14> | | SDS:UD15 | User defined field 15 | <sds:ud15></sds:ud15> | | SDS:UD16 | User defined field 16 | <sds:ud16></sds:ud16> | | SDS:UD17 | User defined field 17 | <sds:ud17></sds:ud17> | | SDS:UD18 | User defined field 18 | <sds:ud18></sds:ud18> | | SDS:UD19 | User defined field 19 | <sds:ud19></sds:ud19> | | SDS:UD20 | User defined field 20 | <sds:ud20></sds:ud20> | | | | | ^{***} Survey scope data tags – $\{n\}$ where n is the survey number – are used to display survey information for the multiple survey report feature. See the section *Print Multiple Surveys* for more information on how to use these data tags *** Super Systems Inc. Page 41 of 58 #### Sample Output | Sample Output | | |------------------|-----------------------| | <u>Tag</u> | <u>Sample Output</u> | | SDS:FILE | SDSReport1.sdsreport | | SDS:PD | 2/16/06 | | SDS:PT | 11:30:00 AM | | SDS:FID | BaT/Ch 1 | | | | | SDS:FM | Furnace Mfg. | | SDS:FT | BaT/Ch Gas Draw | | SDS:FU | Temper | | SDS:FD | 24 x 15 x 12 | | SDS:FC | Α | | SDS:FOR | 650 - 1000°C | | | | | SDS:SD | 2/16/06 | | SDS:ST | 11:30:00 AM | | SDS:SDR | 2/13 THRU 2/14 | | SDS:DUR | 00:30:00 | | SDS:0P | Shaun Scott | | SDS:APP | Scott Brown | | SDS:TITLE | Test Survey 1 | | | - | | SDS:NOTE | This is a test survey | | SDS:TOL | [+/-] 10 | | SDS:0TS | +10 | | SDS:SP | 750 | | SDS:T/CN | 20 | | SDS:T/CT | K | | SDS:T/CS | Z458 | | | Soandso | | SDS:T/CC | | | SDS:T/CCD | 1/15/06 | | SDS:T/CCF | -1 | | SDS:SDN | 2/28/06 | | SDS:SDSM | SSI SDS8020 | | SDS:SDSS | SDS60293201 | | SDS:SDSC | Super Systems Inc | | SDS:SDSCD | 1/15/06 | | | | | SDS:SDSCF | -1.0 | | SDS:SPEC | AMS 2750-C and D | | SDS:INT | 10s | | SDS:T | F | | SDS:SIM | 500 | | SDS:0VS | None | | SDS:MIC | N/A | | | | | SDS:RES | Passed | | SDS:GRAPH600x400 | - 5 5 1 - | | SDS:COM | Company Name | | SDS:UDUR | 30 mins | | SDS:UT/CN | 20 | | SDS:PCT | 20 | | SDS:PDB | 2 | | טט ו.כטכ | ۷ | #### HB1000 Series Thermal Barrier Operations Manual SDS:POL 2 SDS:PPB 2 SDS:PR 2 SDS:PRE 2 SDS:CMF Super Systems SDS:CMA 7EK SDS:IT B SDS:T/CG 16 SDS:OV Yes SDS:0D T/C6 - 1700° SDS:0VT 5:30 SDS:CTD T/C5 is the control T/C, and is not used in uniformity survey results SDS:CTN T/C5 °# °F SDS:ED 2/16/06 SDS:ET 11:30:00 AM SDS:T/CM [Thermocouple image] T/C Offsets Tag Description Usage #o1# Offset for T/C1 #o1# Tag Sample Output #o1# -1 Super Systems Inc. Page 43 of 58 ## Min/Max/Mean/Spread/Deviation | Tag | Description | <u>Usage</u> | |---------|---|--------------| | #n1# | Minimum temp for T/C1 within the selected | #n1# | | | Survey region. Substitute numbers for other | | | | T/Cs | | | #x1# | Max temp for T/C1 | #x1# | | #m1# | Mean temp for T/C1 | #m1# | | #s1# | Spread for T/C1 | #s1# | | #vn1# | Deviation @min temp from setpoint for T/C1 | #vn1# | | #vx1# | Deviation @max temp from setpoint for T/C1 | #vx1# | | #vm1# | Deviation @mean temp from setpoint for T/C1 | #vm1# | | #mT/Cn# | Minimum T/C number | #mT/Cn# | | #mtan# | Minimum T/C number during approach segment | #mtan# | | #mtav# | Minimum T/C value during approach segment | #mtav# | | #mT/Cv# | Minimum T/C value | #mT/Cv# | | #mT/Cx# | The maximum temperature of the minimum T/C | #mT/Cx# | | #md# | Minimum calculated survey T/C absolute deviation from setpoint | #md# | | #rect# | Recovery Time – the time between the time when the first T/C comes into tolerance and the time when the last T/C comes into tolerance | #rect# | | #xT/Cn# | Maximum T/C number | #xT/Cn# | | #xtan# | Maximum T/C number during approach segment | #xtan# | | #xtav# | Maximum T/C value during approach segment | #xtav# | | #xT/Cm# | Minimum temperature of the maximum T/C | #xT/Cm# | | #xT/Cv# | Maximum T/C value | #xT/Cv# | | #xd# | Maximum calculated survey T/C absolute deviation from setpoint | #xd# | Super Systems Inc. Page 44 of 58 | <u>Tag</u> | Sample Output | |------------|----------------| | #n1# | 183 | | #x1# | 183 | | #m1# | 183 | | #s1# | 12.5 | | #vn1# | 383 | | #vx1# | 383 | | #vm1# | 383 | | #mT/Cn# | 2 | | #mtan# | 2 | | #mtav# | 150 | | #mT/Cv# | 1 | | #mT/Cx# | 500 | | #md# | 201.0 | | #rect# | 3 mins 30 secs | | #xT/Cn# | 1 | | #xtan# | 6 | | #xtav# | 1500 | | #xT/Cm# | 500 | | #xT/Cv# | 183 | | #xd# | 383.0 | | #ts# | 13.8 | #### Creating a Personalized Template To create a personalized
template, the user needs to open a Word document and save it to the "ReportTemplates" folder in the main installed folder as a Rich Text Format (.rtf) file. Any of the SDS data tags listed in the above section can be used to create a company-specific template. For example, suppose that someone wanted to create a simple template called "NewTemplate" which displays the current date and time the report is printed, the company name, the title of the report, the number of thermocouples used, and the results of the survey. First, the user would open a Word document and save the file as "NewTemplate.rtf" in the "ReportTemplates" folder in the main installed folder. Next, the user would set up any initial formatting settings, such as margin sizes, page layout (portrait or landscape), eT/C. Now, the user can set up the template to his or her company's specifications. Suppose that the current date and time will be in the top right corner of the report and should be 10-point Arial font. On the first line, the user can select the right-justified option, the 10-point font size option, and the Arial font option. This will leave the cursor in the top right corner. Next, the user will enter the following exactly (including the brackets): <SDS:PD>. This will be where the current date is displayed. On the next line, the user can enter <SDS:PT>. This will be where the current time is displayed. Now suppose the title of the report should be centered, bold, 14-point Arial font. The user will select the center-justified option, and the 14-point font size option. This will place the cursor in the middle of the line. The user will then enter <SDS:TITLE>. The rest of the report - company name, number of thermocouples used, and the results of the survey - can be left-justified, nonbold, 12-point font. On the next line, the user will select the left-justified option, the 12-point font size option, and deselect the bold option. The user can then enter: Company name: Super Systems Inc. <SDS:COM>. On the next line the user can enter: Number of thermocouples used: <SDS:T/CN>. On the next line, the user will enter: Survey results: <SDS:RES>. Next, make sure the document is saved and close the document out. Note: it is always good practice to save a document in progress often in case of power failure. The resulting template should resemble the figure below. Next, the user will select the report template to use from the SDSReporter application's Open option. Clicking on the Open button, , next to the Report Template field will allow the user to choose which report template to use. The user can choose the NewTemplate.rtf file. Next, the user will choose the "Export to RTF" print menu option on the File menu and choose the location to save the .rtf file. The actual report should resemble the figure below. Super Systems Inc. Page 46 of 58 #### SDS Template Manager The purpose of a template is to save the user's time by filling in some of the more generic survey data. For example, the user could create a template for one customer, including company name, T/C type, eT/C; then when the survey is run using this template, this information is already present and it won't need to be entered for each survey run for that customer. The new SDS Template Manager allows the user to see any templates saved to a local computer. The Template Manager also allows the user to create new templates and save them to a local file on a computer or network. #### Description/Function of Template Manager Screen buttons/menu options This section will describe the function of the toolbar buttons and menu options for the Template Manager Screen. Clicking on either the form button or the menu option will produce the same result, so each pair of button/menu option will be explained in this section. #### New Button / File → New The New button, , or New menu option will allow the user to create a new set of templates. The maximum number of templates that can be added per file is 32. Note: initially, there are no templates in the file. #### Open Button / File → Open The Open button, , or the Open menu option will allow the user to open an existing template file from the local computer. Super Systems Inc. Page 47 of 58 Click on the **Browse** button to select the file to open. The SDS software will display a common Windows dialog box for the user to select which file to open. Once a local or remote file has been selected, click on the **Open File** button to open the file, or click on the **Cancel** button to close down the screen without opening a file. Note: When the Open Button or the Open menu option is clicked, the tabs that contain all of the fields for the template will not become visible – an individual template must be selected to view the tabs. Once the file has been loaded, the filename will be listed above the Templates list on the left of the form. #### Save Buttons / File → Save The Save button, , or Save menu option will allow the user to save the current file back to the local machine. Note: Any changes made to any template will be saved at once when this option is selected. Note: If the user is working with a new template file, the Save function will act like the Save As function (see below section). **NOTE:** The template file can be saved only to the local machine; the file cannot be saved to the HB1000 Series instrument. #### File → Save As This option acts the same way as the Save option, only it will display a dialog box that will allow the user to select the file to save. This functionality of this screen is similar to the Open Template screen. The template file can be saved locally on a computer. Click on the **Browse** button, which will display a common Windows save dialog box. The user will be able to select the location and give the template file a name. Click on the **Save File** button to save the file, or click on the **Cancel** button to close down the screen without saving the file. Super Systems Inc. Page 48 of 58 The software will always display a message box with the success or failure of the save. #### Exit Button / File → Exit This option will close the Template Manager screen. #### Add Template Button This option will add a template to the collection of templates stored in memory, up to 32 total templates. The only required field is the Template Name. The default template name is <Template Name> Once a template has been added, the new template will be loaded into the fields. #### Delete Button This option will delete a template from the collection of 32 templates stored in memory. #### Copy Button This button will copy a template into the collection, assuming there are less than 32 templates already. This would be useful if the user only wanted to change one or two items on the template, such as the setpoint. #### Arrow Buttons The arrow buttons next to the **Copy** button will allow the user to change the order of the templates in the file. This way, the more commonly used templates can be kept at the top of the file so the user will not have to scroll down to see the template on the SDS. The up arrow button will move the template up one position, and the down arrow button will move the template down one position. Super Systems Inc. Page 49 of 58 ## **Description of Template Manager Screen Tabs** Template Information Tab This tab contains general information about the template such as the Template Name, the Company Name, furnace information such as the furnace ID, the make and model of the furnace, the furnace dimensions, the temperature type (Fahrenheit or Celsius), the temperature range, the furnace type, the furnace use, the furnace class, and any Notes about the template. See "Description of Template Manager Screen Fields" for the maximum number of characters allowed per field. Super Systems Inc. Page 50 of 58 ## Survey Information Tab This tab contains information about the survey such as the survey duration in minutes, the survey setpoint, the survey tolerance, the operator performing the survey, the simulated load, in pounds, and the specification the survey meets. #### Active T/Cs Tab This tab contains information about the active T/Cs such as the number of T/Cs used, the Gauge of the T/C, the T/C type, spool serial number, spool correction, and a check box for each of the T/Cs. There is also a check box to allow the user to use the active settings for the T/Cs or to individually select the T/Cs to. Checking "Use these active T/C settings" will set the checked T/Cs. Super Systems Inc. Page 52 of 58 #### Controller Information Tab This tab contains information about the controllers such as the Controller Manufacturer, the Controller Model, and the instrument type. It also contains information about the PID settings such as the Cycle Time, the Dead Band, the Output Limit, the PB (gain), the Rate, and the Reset. Super Systems Inc. Page 53 of 58 ## Description of Template Manager Screen Fields This section will describe the Template Manager screen fields and list any constraint for the fields. | Field Name | <u>Description</u> | Maximum # of Characters | |----------------------|--|-------------------------| | Template Name | The name of the template | 22 | | Company Name | The company's name | 40 | | Furnace ID | The ld of the furnace | 17 | | Furnace Make/Model | The make/model of the furnace | 22 | | Furnace Dimensions | The height, length, and width of the furnace | | | Temp Type | The type of temperature | 1 (F or C) | | | (Fahrenheit or Celsius) | | | Temperature Range | The low and high range of the furnace | 10 | | Furnace Type | The type of furnace being surveyed | 20 | | Furnace Use | What the furnace is used for | 15 | | Furnace Class | The class of the furnace | 1 | | | (Version 1.101.0.80 & above) | | | Notes | Any additional notes desired | 61 | | Survey Duration | The duration of the survey in minutes | 3 | | Survey Tolerance | The survey tolerance/uniformity required | 2 | |
Simulated Load | The simulated load in lbs. | 5 | | Setpoint | The survey setpoint | 4 | | Operator | The operator performing the survey | 20 | | Specification | The specification the survey meets | 25 | | Number of T/Cs | The total # of T/Cs | 2 | | T/C Type | The type of T/C | 3 | | T/C Spool SN | The spool number | 18 | | T/C Spool Correction | The spool correction factor | 8 | | T/C Gauge | The gauge of the T/Cs | 2 | | Use Active T/C | Use the active T/C settings option | N/A | | | Settings | | | Check box 1 – | The active T/Cs for the survey | N/A | | Check box 40 | | | | Controller MFG | The controller manufacturer | 18 | | Controller Model | The controller make/model | 18 | | Instrument Type | The type of the instrument | 1 | | Cycle Time | The PID cycle time | 2 | | Dead Band | The PID dead band | 4 | | Output Limit | The PID output limit | 3 | | PB (Gain) | The PID PB (gain) | 5 | | Rate | The PID rate | 6 | | Reset | The PID reset | 6 | | General Notes | | | #### **General Notes** - Checking "Use these active T/C settings" will enable the checkboxes - Unchecking "Use these active T/C settings" will disable all 40 check boxes. The T/C check boxes will still be checked, but the SDS instrument will not use these settings. Super Systems Inc. Page 54 of 58 # Line Diagrams Line Diagram for HB 1012 Line Diagram for HB 1015 Super Systems Inc. Page 56 of 58 #### Warranty Limited Warranty for Super Systems Products: The Limited Warranty applies to new Super Systems Inc. (SSI) products purchased direct from SSI or from an authorized SSI dealer by the original purchaser for normal use. SSI warrants that a covered product is free from defects in materials and workmanship, with the exceptions stated below. The limited warranty does not cover damage resulting from commercial use, misuse, accident, modification or alteration to hardware or software, tampering, unsuitable physical or operating environment beyond product specifications, improper maintenance, or failure caused by a product for which SSI is not responsible. There is no warranty of uninterrupted or error-free operation. There is no warranty for loss of data—you must regularly back up the data stored on your product to a separate storage product. There is no warranty for product with removed or altered identification labels. SSI DOES NOT PROVIDE ANY OTHER WARRANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OF IMPLIED WARRANTIES, SO THIS LIMITATION MAY NOT APPLY TO YOU. SSI is not responsible for returning to you product which is not covered by this limited warranty. If you are having trouble with a product, before seeking limited warranty service, first follow the troubleshooting procedures that SSI or your authorized SSI dealer provides. SSI will replace the PRODUCT with a functionally equivalent replacement product, transportation prepaid after PRODUCT has been returned to SSI for testing and evaluation. SSI may replace your product with a product that was previously used, repaired and tested to meet SSI specifications. You receive title to the replaced product at delivery to carrier at SSI shipping point. You are responsible for importation of the replaced product, if applicable. SSI will not return the original product to you; therefore, you are responsible for moving data to another media before returning to SSI, if applicable. Data Recovery is not covered under this warranty and is not part of the warranty returns process. SSI warrants that the replaced products are covered for the remainder of the original product warranty or 90 days, whichever is greater. #### IMPORTANT! The Thermal Barrier and Heat Sink must not be used in atmosphere, under vacuum, or for high pressure quench, unless the product is ordered for that specific application. If the product has not been ordered for the specific application, damage will occur, and the product warranty will be voided. Super Systems Inc. Page 57 of 58 ## HB1000 Series Thermal Barrier Operations Manual # **Revision History** | Rev. | Description | Date | MCO # | |------|---|-----------|-------| | NEW | Initial Release | 7-6-2012 | 2103 | | А | Set Off Trigger temp changed; Set Degree Type added; guideline for custom Thermal Barrier time and temperature added; Thermal Barrier usage guidelines updated; SDS Reporter menu items updated; manual format updated. | 1-21-2015 | 2156 | | | | | | | | | | | Super Systems Inc. Page 58 of 58